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Page 20. Linc 5 from foot. In the expression for p, insert "k beforo
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Page 47, linc 4. For %written® read "within”,

Page 61. Line 7 from foot. Delete " Nz = " in the expression for the
varlonce -of the estimated mean.

Pnge 114¢ Linc 4 from foot. For "twon'! read"town".
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Page 145, Line 3 from foot., In formula (187), insert ")" after s;x .
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PREFACE

Thesc notes form the basis of a one-quarter course of lectures
on sarpling techniques delivered at North Carolina State College to
graduate students who are spocializing in statistics. The main ob-
Ject of the lectures is to present the principal techniéﬁes in cur-
rent uscy, with the theory from which they are derived. For reading
the notes, facility in elementary algebra snd a good knowledge of
elementary stétisticaiffheory are required: calculus is used only
to a slight oxtent. Qccasionally, proofs are given in a condensed
forn, since it is desired to concentrate attenticn on results rather
then on doteils of proof.

In the preparatibn of the notes, generous assistance has been
given by B, H, Jebe and-A, L. Finkner, Resident Collaborators, Agri-
cultural Estinates, Bureau of Agricultural Economics, Mr. Jebe pre=
pared the first draft of mogt of Chapters 1 to 5, while Mr. Finkner
prepared that of Chapter 9; both have taken major responsibility in
supervising the later stages of mimeographing. My test thanks are
due to Mrs. Jossie M. Gray for the typing, and to Miss Mary Ruth

Reavis who did the mineographing.



INTRODUCT ION

l.1 Within recent years sampling has been increasingly used for
obtaining information. The principal advantages claimed for the sampl-
ing method are: ‘

(1) Reduced cost., If data are secured from only a small fraction

of the population, expenditures will be smaller than if a complete
count were attempted.

(2) Greater speed. For the same reason, the data can be collect-
ed and summarized more quickly with a sample than with .a complete count.
This may be a vital consideration when the information is urgently
negdeﬁ.

(3) Greater accuracy. A sample may actually give more accurate
results than the kind of complete cbunt that it is feasibdle to takes
Since a much emaller field force is needed for a sample, it may de pos-
sible to engage personnel of higher quality and to give them more thor-

ough training.

1.2 Qggg;g;_zgggggg;g_lg_gggp;;gg. “In order to indicate the scope
of this course, it is convenient to indicate briefly the steps that are
usually involved in the planning and execution of a sample survey. These
steps will be grouped rather arbitrarily under eight headings.

(1) Definition of the population to be sampled, This may present
no problem, as for instance when sampling a given batch of 1,000 elec-
tric light bulbs in order to estimaté the average length of life of a
bulb. On the other hand, in eampling a population pf farms, rules must

be set up to define what constitutes a farm, and borderline cases will
arise. It is important that these rules be usable in practice: that is,
the enumerator should be able to decide without much hesitation whether

a doubtful case belongs to the population or not. Further, the population

sampled should coincide with the population about which information is
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wanted. Sometimes this will not be feasible. For example, in taking
a sample of voter's opinions in order to predict the result of an elec-
tion, the pofulation that it is desired to sample is the population of
voter's opinions when they go to the polls. Since the sample must be
taken several days before election day, all that can be sampled is the

population of opinions of intending voters some days before election.

Both their opinions and their intention to vote may change.
(2) Determination of the data to be collected. The data needed

depend on the purpose of the inquiry. It is well to have this purpose
clearly defined, and to verify that all the data are relevant to the
purpose and that no essential data are omitted. There is frequently

a tendency to attempt to collect too much data, some of which is never

subsequently examined., Sometimes data that would be desirable are
impossible to collect, at least in an accurate form. For instance,
people may be unable to recall accurately their opinions or the de-
tails of their business transactions at some previous time.

The construction of the schedule or questionnaire on which the
data are to be recorded often presents difficult problems, which have
been the subject of specialized study in recent years. A few of the
devices that have been found useful are given below.

(i) The questionnaire should be reviewed by disinterested persons.

(11) The questionnaire should be tested in the field before the

survey itself begins. This pre-test should reveal questions
that are ambiguous or not clearly worded, questions that the
regpondent finds difficult to answer, and the types of query
that the respondent may make about the meaning of certain

questions.
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(114) In questions of opinion, every attempt should be made to
engure that the wording is'neutrel':i.e., that it does
not influence the respondent to give one kind of answer
rather than another., If it is not clear which of two wordings

is preferable, each may be tried in half the schedules.

(iv) Sometimes the questions asked are of little or no interest to
the respondent. In such cases it may help to insert addition~
al questions that will evoke the respondent's interest, even
though they are rather irrelevant to the mein pfﬁpose of the
sample.,

(3) Choice of sampling-unit. The sempling units are the elements
into which the population is divided. Sometimes the appropriate unit is
obvious, as in the case of the semple of light bulbs, where the unit would
be a single buld. In sampling a town population, however. the unit might
be an individual, a household or'a.city Plock. In sampling a field of
corn, the unit might be a singie plant, a single hill;'a group of four
hills, or perhapas some larger groﬁp of hills. The best size of unit is
that which will glve the desired degree of accuracy in the estimates at
the smallest cost. If a fixed percentage of the population is to be
sampled, it usually is found that sampling costs are lower when the unit
is large. On the other hand, the accuracy obtained through the use of
largervunits tends to be lower,

(4) Method of selecting the sample. There is now quite a variety
of procedures by which the sample may be selected. In the choice of a
method, the general principle is the same as that ﬁsed in the choice of
gize of unit: the method selected should provide the desired degree of
accuracy at minimum cost. The question of the size of sample also arises

heres As will be seen later, the size needed can be estimated, at least

roughly, when the method of sampling has been selected and its sampling

properties have been studied.
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(5) Method of collecting the datm: After the members of the
sample have been chosen there arises the question of how to obtain the
information from them. This may be done by mail, by telephone, tele-
graph or by direct enumeration, i.e., an interviewer seeking out the
sample members and elicliting the information. A.combination of indirect,
say mall, and direct enumeration may be employed. Efficient combination
then must be considered.

(6) Organization of the field work. Here many problems of business
administration are involved which lie outside the field of statistics.

It cennot 'bé too strongly however, that the success of any
survey depends on competent field work. The personnel must be qualified
to cove with the tasgk of enumeration, and must receive training in the
purpose of the survey and in the methods to be employed. Supérvision of
fhe fieid work and checks on its quality are essentlal.

(7) Summary and analysis of the data. The first step is to 'edit!
the schedules, in the hope of amending recording errors, or at least of
deletihg data that are obviously erroneous. Difficult questions of
Judgement may be met. Thereafter the tabulations leading to the esti-
mates are verformed. Different methods of estimation may be available
on the same data, and a superior method sbmetimes results in a substan-
tial increase in accuracy.

(8) Information gained for future surveys. The best method of
sampling depends on the type of variation that exists among the units
in the nopulation, In general the only sources of ‘information about
‘this variation are the results either of samples or of complete cen-
suses, Consequently any sample is potentially a valuable guide to the
conduct of future sampling investigations., Given the results of a
sample, it is oféen possible to investigate the accuracy that would

have been obteined from alternative methods of sampling that were


mailto:emph@.sized,
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considered but not used. The cost of such alternatives may be estimated
from cost data. Thus each sample of a given type of population should
lead to more efficient sampling in the future.

1.3 Ségpg of the course. The theory of sample surveys has been
mainly concerned with iteme (3) choice of sempling unit, (4) method of
selecting the sample, (7) summary and analysis of the data, and (8) infor-
mation zained for future surveys. This course will likewise dsal mainly
with these topics. It should be realized, however, that ihe other itemg———
definition af the population, determination of the necessary data and
method of collecting it, and orgenization of the field work--——are equally
important: poor field work, for instance, may ruin an otherwise admirable
survey.

The various topics wnibe discussed in the order that seems easiest
for expository purposes, rather than in the order in which they are en-
countered in practice when a»sample'survey is undertaken.

l.4 Eggg;g;_niiggiglg. In deciding whether to choose one sampling
procedure rather than another, the following principle, which has already
been mentioned, is being increasingly used. The principle is to select
the method that gives the desired accuracy at the lowest cost; or alter-b
natively the maximum accuracy at a given cost. In the practical use of
this principle, we must be able to predict both the accuracy and the cost
of éach wrocedure before we can decide which to select. With samples of
the sizes that are common in practice, there is usgally good reason to
believe that the semple estimates will be epprowimately normally dis-
tributed. Consequently, the spmpling variance of the estimate is used
to provide the messure of its accuracy. A considerable part of the work
in this course will consist of the calculation of formulas for the sampl-

ing variances of estimates obtained by varlous procedures. These
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formulas usually contain one or more unknown parsmeters that describe
proverties of the population. In order to meke a prediction of the
sanpling variance, values must be inserted for the unknown parameters.
It is at this point that knowledge obtained from previous sampling of
the snme or similar populations is very helpful.

The prediction of probable costs may also require data obtained
from previous surveys, Some rather simple types of cost function which
have been used will be discussed later, though knowledge of cost func-
tions is still rather scanty.

1.5 ZErrors of sample survevg. In connection with this general
principle, various writers (Mahalanobis, Hotelling, Deming and Stephan)
have discussed sources of error that will affect the accuracy of a
sample. Among these sources, three may be indicated here:

(1) Sampling variations, that is, errors arising from the fact

that only é portion of the population has been examined.

(i1) Recording mistakes. These compri;e errors made in recording
the data on the schedule. They might arise from either the
enumerator or the respondent, and might be the result of
‘mistakes, biases or dishonesty.

(1i1) Physical fluctuations. There may be an inherent indefinite- .
ness about the quantity that is being measured, e.g., the total
production of a crop will vary according to the molsture con-
tent, which will depend on the weather. Similarly, many
quantities change with time, such as voter's intentions or
the population of a city, and when a survey extends over
several weeks it is not clear exactly what has been measured.

This classification leads to some interesting conclusions. First, while

a complete count avoids error (1), it is Just as subject to errors
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(11) and (1i1) as a sample. In fact, it may be more subject to (ii)
than a semple if a lower quality of enumerator must be used. Secondly,
the size of the physical‘fluctuations imposes a limit to the accuracy
which 1t is worth-while trying to achieve by reducing sampling fluctua-
tions and recording mistakes. Thirdly, if recording errors are large
they may contridute much more than the sampling variations to the total
error. If this is the situation, a marked increase in accuracy can be
secured only by reducing the recording errors, and nbt by taking a 1arger'

sample in order to diminish still further the ‘sampling variationms.
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BASIC THEORY

2.1 Sample surveys deal with samples drawn from populations that
contain o finite number N of units, The values of the item that is
being measﬁred are denoted by ¥y yz, v e s yﬁ. In general, no partic-
ular form of frequency distribution is assumed for these values. In
practical applications it is, however, frequently taken for granted
that the means of samples of size n are approximately normally dis-
tributed. This assumption implies that the original values‘are not

too fer removed from a normal distribution,

2.2 Yor the population these relations are defined:;

hed y + + ] [ ] [ L4
The Meant y = 1”2 x&— (1)
D ‘ N
-2
2 Z(y; - ¥p)
The Variance: o” = o1 (2)

Note: Bome writers use N as a divigor when defining the
variance as is usually done in the mathematical
theory of finite populations. The definition given
above makes it easier to use the concepts of the
analysis of variance.,

2.3 Simple Random Sampling: First it is to be noted that a
aample of n distinct elements can be chosen in NCn ways from the
population. In factorial notation this is expressed as N! / (¥-n)! n!
ways.

Simple random sampling is defined as: A method of selecting n
items out of N a0 that it gives overy one ofv?he .NCn'grbups an equal
chance of being chosen. As an illustration consider an example:

N = 5, a population of 5 elements and n = 3, samples of 3 items to be
drawn from the population. There are 10 possible samples of 3 items.
They are!

ABC ABD ABE ACD ADE

ACE BCD BCE BDE CDE
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Note: If the elements are drawn, one by one, without replace~
ment, and if at any stege, or any draw, all undrawn
elements have an equal chance of seclection, this pro-
cess gives a simple random sample. Applied to our
example the process gives an equal chance for obtain-
ing any one of the 10 possible samples listed.

2.4 Let ih denote the mean of a simple random sample of size n.

Consider E ( ) as the average over all the §C, Possible samples.

" Observe that the operator E is used here as in the discrete case in

formal probability theory, e.g. to the expectation of the throw of

a single die.

Theorem }a: E(yn) = ¥y

For BF)= 2 E(y +3 ...+
or E(¥,) n B+, y)

(3)

Since every unit appears in an equal number of samples,

E (yl LN yh, must be some multiple of‘(yl f . . .yh). Further,

 the multiplier must be n/N, since the first expression containg n terms

and the second N terms.
Hence!
1 n

EG) s+ B G

2.5 Theorem 1b:
-~ 2 N2
) = 2 N= + _N(n-
AR e =l R

n(N-1)

~2

¥, (4)

This theorem is proved in order that it may be applied in the

proof of later theorems.

Proof:

(g, + vy, + )2
.2 Yy yz IR
yn nz
yz + yz e e yz
= 1 2 n + 2- ( +
nz TJ.‘3 yl yz
By symmetry,

2
B (yl .« o g+ yi) = —%— (y? v e o t y;)

C ..t
Vo1 yn)
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and. E ( ¢ v o + = —'g‘(&ﬂ)" ( ¢« o »
Y193 Yoy Vo) w1y 1t Yy %y
Hence, N 2
E (y) = b . y + —ﬂg——l—)__ (y J o + o Y ) .
nN 103 nN(N-1) 1 2 N-1 N
But 2( s s @ ) = ( e« o o * + + e o t
y, ¥yt oWy 2 h Y, yN) v, (yl Y, yN)

+ + . @
VN(yl Y, *'yN_l)

= N— - + N- - + * o
y; ( ypyl) v, ( T yz) |
* ¥y (Nyp - ¥y,
- i 2 2
= Nyp(yl + ya + o 0 . YN) - yl - é » ¢ o - yN

2 N 2
=N "2 1)
yi 1y1

Introducing this last reduction in B (ﬁi), we obtain

-2, n~1 2 N(n-1 -2
E (yy) = nN( Nl}zyi n(¥-1 'Yp
= Hen + _Ein:ll_
nN ( N-1 y n(¥-1) P

2.6 Theorem 2, Varisnce of the mean of a random sample.

E(‘-“)-—-—“T;B— o? (5)

Proof: ZExpand the above, obtaining

-_ e —2
E (¥ )-ZE +
Vo ¥, * 7,

-2 -
= B (yh) - yi » by Theorem la.

Substitution from Theorem 1b gives

N
1 ([ Ny 2, /M@ 2
—t( N-n_} 35 + -1
N ( N-1 ) 1 Y1 T ) Ip
N
= ] Nen T - N-n 52
N a1 % a(x-1)  ’p
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L. _N-p . | 2 _ w3
o = 5 ) (z yi N YP)}

- X O
N n
The quentity _N-n_is usually called the finite pépulation gorrection.
N
Note: If _n < .05 (i.e. less than 5% sampled), o?
N : n
depends primarily on n, and not on _n_ . For

N
instance, if 02 is the same in the two cases, a

sample of 500 out of a population of size 200,@00
will have a mean almost as accurate as that of a

sample of 500 out of a population of size 10,000.

2,7 Theorem 3, Estimation:of o® from the gample data.
‘ - (2
z(y, -v)
sz = i n ig an unbiassed estimate of 02., (6)
n-1
Proofi
n

2y _ -2
E(s)-—- -—ﬁ-}]-.— B (Eyi-‘nyn)

o)

M)
=

§ Yﬁ - -l ?i] , from Theorem

- N-n
YO-1) N-1 1b.

Combining the first two terms in brackets, this reduces to
1 N 2 -2
E%n-;g Ty - N(n-1) Y
n-1 N(N-1 ; 1 N-1 b

c2

it

i

Hence, the estimated standard error of in is

o of0en) 8 (7)
yn ﬁ A/S—

g
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CONFIDENCE LIMITS AND ESTIMATION OF SAMPLE SIZE

(SIMPLE RANDOM SAMPLING)

3.1 Confidence limitg: If n is reasonably large and _pn_ is
N
not too large, in will be assumed approximately ncrmally distriduted adbout
?p' Thus, approximate confidence limits may be constructed in the

ordinary way by writing

v

- ;,n + t(a,n-1) _l%&_ 8 (8)

e
whore t(a,n~1) is the value of t corresponding to a significance
level &, for (n-1) degrees of freedom.

3.2 Size of sample needed. Before the sample is taken, it is
ugeful to be able to obtain some idea of the size of sample that will
be needed in order to attain a desired standard of accuracy. The
accuracy required is usually defined by specifying a probability level
a (e.ge, .05, ,10, .20) and a margin of error 4 allowable in the
sample mean. That is, we want

P ‘{J ¥, - §§l ;;.d>'= a
If this equation holds, the probability that the sample mean lies
within a distance 4 of the population mean is (1l-a), and can be
made as close to certainty as we like by making a sufficiently small.
The equation simply states that the confidence interval is of width
2d. Two cases must be considered.

3.3 Cage 1. The value of n cannot be predicted without some
knowledge of the standard error ¢ in the population. In Case 1, ©
is estimated from previous sampling of a similar population, or
simply by intelligent guesswork. Since the estimated o is likely
to be itself in error, we cannot expect more than a rough estimate

of n. If o were to be correct, the value of d would be given by
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= t(a,=) Nen , _© (9)
SN JE

where t(q,*) is the normal deviate corresponding to the significance

level a. Solving for n, we have

Nn = (N-n) o° tz(a,m)/dz

2 2 2 2 2
or n = No® t (G.,‘”)/ld = ot (a'm){:dd (10)
e P 2 S L e
P Rl a®

ol If N is very large; the second term in the denominator cen be

heglected; and we obtain

'no = o° 2 [a%, | (11)

The procedure is as follows: First calculate n . If nO/N is an

‘appreciable fraction (say greater than .05), take

; ng | - (
n = 12)
1+ Bo
N

The value of n will then be the correct solution of equation (10),

Yhen the sample is actually taken, the confidence interval will
be calculated by means of the t distribution rather than of the nor-
mal distribution: that is, by equation (8) rather than by (9). A
furtiier refinement that is sometimes introduced is to adjust 5 so ag
to take account of the fact that the t value for (n-1) degrees of
freedom, which appears in (8), is larger than the corresponding nor-
mal deviate which appear; in (9). For instance, if n turned out to
be 16, it may be verified that n would have to be increased to 18
for this recason, The refinement, however, is hardly worth-while

unlegss the initial estimate of o is good and n is less than 20.
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3.4 Ixample! An example 1llustrating application of the formula
for determining sample size: The data were obtained from a planting
of silver maple seedlings in a bed 430' long. The sampling unit was
a one foot strip across the beds, By complete enumeration of the bed,
the following population values were obtained for the number of seced-
lings per unit.

%=19aw o = 85.6

Assuming simple random sampling, how many sampling units must be enum-
erated to estimate F, within 10% with a confidence probability of ,95?

Applying equation (9), we obtain

2 .2 |
no = __9__.2_L__ = 85.6 4 = 95
a (1.9)
since 4 = (19) x (0.1).

Then’ 95

1 + 95/430

= 78,

The result shows that about 20% of a whole bed has to be counted to
obtain the accuracy desired. ’

3.5 Cage II, The methods given for Case I do not guarantee that
thelconfidence interval will be of the required width, for the initial
eastimate of o may turn out to be wrong, and even if o is correct, the
8 that is found when the sample is taken will differ from c. All that
the procedure attempts to do is to ensure that the interval will be
about the desired length, If an exact interval is.wanted, the infor-
mation about o must be obtained from the population that is belng sampled.
A method that guarantees a more exact confidence interval is due to
Charles Stein ("A Two Sample Test. . . ." Annals of Math, Stat., Vol.
16, pp. 243-258, 1945), Stein's approach considers taking the sample

in two parts.
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The first part of the sample, of size nl, say, supplies an esti-
mate 8, of o, calculated in the usual way, and also a preliminary
estimate of the mean, When the first part hes been taken, Stein
shows how to calculate the number of additional observations needed
in order to have a specified confidence interval. Note that both
parts must be samples from the population about which information is
desired. Thus, if the population changes with time, the time interval
betwecen the first and second parts nust be sufficiently small that no
appreciable change will have occurred. |
Since Stein's method Va§ developed for infinite populations, the
case vhere n/N is negligible will be considered first. When the first
sample has been obtained, a confidence interval for §b can be calculated.
The balf-width of this interval is (by eqﬁatién (8), with n/N negligible)
| tla,ny - Vel -
If this quantity is less than or equal to 4, the desired half-width, the'
sample is alrcady sufficiently large. If the quantity exceeds d, take
additional observations so that the total size of sample n is at least
as great as
e%t%(a,n; - 1)/ (13)
Then, if ?n is the mean of the whole sample
P{‘in_grpf;cﬁ\«z. (14)
. /
Sketch of proof. The proof assumes that the observations,
Y10 Vor o o e ¥+ are normally distributed about §p' Throughout the
proof, d,a and n, are assumed to be fixed quantities. The total sample
size a is not fixed, but is a random variatc, since its value devends
on the value of g that turns up in the first sample. Nevertheless, for

fixed gy 1

is fixed, and the quantity
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VB (v, - yr)
is normally distributed with mean zero and variance 02. Hence, this
quantity follows the normal distribution whether g is fixed or not.

Moreover, the distribution is independent of that of s. Consequently,

Mﬁf(yh - yr)/s
follows the t distribution with (nl-l) d.f.. By definition of t(a.,nl—l),

it follows that
P(',ﬁ?(-};n - 'ip)/ s‘ > t(a.,nl-l)} = o (15)

This is the key result in the proof. Further, by the way in which the
value of n was calculated, we always have

Ji 2 sta,n-1)/d, or Jifs 2> tla,n -1)/4, (16)

so that

WG, -5 1o a‘ o, - 5

Hence, from (15)

p{ 45, - §P)/a‘>3\\<a

ia'eo P{ 1 ;n"}-rp' ;d}‘sa .

The average value of n that is required in a given situation depends

on the choice of n;. Exact information about the optimum value of n, is
not yet available, the optimum being that value which leads to the
smallgsi.average n. It appears, however, that the optimum By is such
that » second part will usually be necessary. In other words, if it

is convenient to take the sample in two parts, n1 should be chosen as
somewhat less than the size that scems to be nceded. On the other h;and,

if it is troublesome to take the sample in two parts, n. may be chosen

1
at about the expected size, or perhaps a little larger if a few unnecessary
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observations do not matter.

Expmple. Suppose that 4 = 10, o ,05. From previous information,
o is guessed as about 50 (?hough this guess may be seriously in error) .
With tais volue of o, it appesrs from (13) that a sample of about

(2,500) (1.95)2/100, or 96,

will be needed. Assuming no difficulty in teking the sample in two
parts, ny might be chosen as 50.

In this case t(.05,49) = 2.01. 2 1s found to be 1,938, We find
that

ts//n; = (2.01) (44.02)/ 7.0711 = 12.51,
so that a sample of 50 gives a confidence interval of half-width 12.51,
which is larger than desired. Finally, n is chosen so that
2> t%°/a% = (4,040) .(1,938) /100 = 78.3
That is, 29 additional observations are taken to make the total n = 79.
If the finite population correction must be applied, the only change 1s
to choose n so that it is at least as large as |
tz 32
gf _
B2.

e
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SAHFLING FROM "BINOMIAL TYPE' POPULATIONS

4.1 Suppose that the data to be taken divide the sample into two
classes or groups, say A and A' (thogse not in A). The result of the
sampling may be expressed as a percentage. Examples are a pre-election
pell to determine the proportion of voters favoring a certain candidate,
or a survey t0 measure the proportion of housewives listening to a radio
program; This type of sampling resembles ordinary binomial sampling
except that ﬁhe individuals measured come from a finite population.

The results already obtained can be applied if the data are coded -
in the following manner: For the members of the sample yi, yz « s » yﬁ,
or population, Yy ¥ '

2
not in A. Then the sample population proportion,

- Number in Sample in A -
Yo = - =D, and the

n

v e .xN, mark 1 for each y in A and O for each y

population proportion,

-=-—MM.QLLD_A-——=
Yp - P

4,2 Theorem 4. The definition of the "Binomial Type" population

variance:

2 N
g = ¥-1 P q where q = 1-p. (17)

Proof: 3y definition,

2 _ 1 2 =2
o ) (z y; - ¥ yp) (1

"

1’2 [] L] . N).

1
N-1

and definition of p given in (4.1).

(Np-X pz) = —ﬁ§i~ pq from the coding
4.3 Theorem 5. Variance of the sample proportion from a simple

random sample is _N-n P g
-1 n (18)

rroofs
This follows at once from the previous results, (Sec. 2.6).

Theorem 2 grve G 5 Nen 2
b —
Va K I
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By substitution, using Theorem 4,

V(Fg) = —N?L - pr— PO

= Nen P ‘rq .
N-1 n

4,4 BEstimation of the variance of the sample proportion: By sub-

stituting the sample values, we obtain

v N e 1 1
(p,) = Tﬁ:i?;. Py o vhere q P, (19)
It 1 ‘ Nin-1
s to be noted, however, that E(pn qn) s YY) Pq
Therefore, gn unblased estlimate of
v( = Nen n(&vli . = N~ (20)
%) T Wha N T WD ko

¥or any reasonable size n the correction for bias is negligible and

either (19) or (20) may be used.

4.5 Confidence limitg for the sample proportion: If normal theory

can be applied the confidence limits are

p=1p_ * ta) .ﬁ@ “Ji__i X (21)
1

This relation is still not in usable notation since p and q are unknown.,

Substitution of estimated values from the sample glves

— P, a
Py ® t () ~Jﬁ-; P where t{a) is taken with = degrees
F1 S
of freedom, . (22)

When p is near .5 the normal approximation gives satisfactory
results. With increasing sample size the normal theory may be applied
even though the sample proportion deviates considerably from .5. The

relation is indicated in the following abbreviated table:
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Observed Proportion Sample size for normal
P, theory t0 apply
.4 or .6 : 50
3 or .7 100
.2 or .8 400
«l or .9 1,000

Confiden imits when N Theory doeg not 1y: Several
procedures are avallable in this situation. One procedure is to construct
charts for determining the confidence limite. These charts are based on
a summation of the terms in the binomial expansion with varying p and n
by use of the Incomplete Beta function. A good set of charts is given
in Simon's "An Engineer's Manual of Statisticel Methods". Oﬁher sources
of charts are Clopver and Pearsoﬁ and the Stetistical Research Group
(see references). Tables may also be prepared in place of charts. A
useful table is given in Snedecor, pp. 4-6 (adapted from Clopper and
Pearson).

A direct approach, which appears to be a more useful procedure, has
been suggested by M. S. Bartlett. Bartlett considers the normal theory
confidence limit eéuation (21) of (Sec. 4.5) and proceeds to solve it
for p. Ignoring the finite population correctidn the quadratic solution

for p can be expressed as

pp tkt,/1+2p qfk
p=— g where k = tz(a)/2n (23)

1+ 2k and g = 1-p .

As an illustration of the results obtained by the various methods,
let us consider the following sample results: Foﬁr hundred individuals
were asked a given question to which "yes" or "no" answers were recorded.

Seventy persons answered "yes", so with n = 400, P, = 70/400 = ,175,
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Method 99% Confidence Limits
Lower Upper
Standard "Normal 126 .224
Bartlett "Normal® 131 .229
Simon Chart .130 228
Snedecor Table (by interpolation) .121 .237

In this tadle the Simon Chart result probably is the "best" answer.
The standard "normal® procedure is to be criticized for placing the
limits symmetrically about the observed proportion P. The advantage
of the Bartlett "Normal" method is that it gives an improved answer
without the use of charts or tables. On the other hand, the Snedecor
Table provides a fair approximation without much calculation.

4,7 Estimation of sample size required: Considering that 4 is
one~half the width of the confidence interval, as in (Sec. 3.2), and
that normal theory can be applied, a solution may be obtained for n,
the required sample size, for a specified accuracy when sampling the

"Binomial Type" population. The solution may be expressed as

2
t P qn/dz

t‘ pn qn LY ( 24)

1
- L=
When the finite population correctioﬁ can be ignored the solution beé&ﬁes
simply n = tz Py, qn/dz. When p is near O or 1, the use of the normal
approximation will require a big sample. A study of the charts or
tables (refer Sec. 4.6) will give a good approximation to the sample
size required when normal theory does not apply.

4,8 Zxtension to more than 2 classes in the Population: There are

a number of sampling situations in which the population divides itself
into more than 2 classes. We are then confronted with a "Multinomial
Type" estimation prodblem. As an example, suppose a survey has ylelded

these results in answer t0 a given questioni
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Class
Reply: Yes No Don't know Yo answer
Number giving
the reply: cy cz c3 c4

Then n = ¢y + cz + c3 + 04 o the sums of the numbers in the classes.
Other definite groupings may be envisaged. Ratios or percentages afe
then computed from such data. At this stage, 2 cases may be disting-
uished.

4,9 Case I. We calculate

p = Number in any one clagsg

or
n n

- __Numb n ombination of ¢l
Pn = .
. n
From the above illustration, we might take the number "Yes" or combine
the "Yes" and "No". Then, p = cl/n orp = (¢ + cz)/n. The theory
n
as already presented applies to this case. That ié,

N=n
V(pn) = -Dn Pq

4.10 Case II. Suppose we take

Number in one or more classes in the sample
nt n!

Number in one or more classes in the sample

n - (number in certaln classes omitted).

Now the denominator does not include all the classes, e.gy we might
omit "no answer" and "don't know" in (Sec. 4.8) and calculate

P, = cl/(c1 + ca), the ratio of "yes" to "yes" plus "no",

Since the denominator is not fixed, the variance appears at first

to be more complicated. The situation mny be studied in the following

manners:
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Let N' be the population number in the classes that are being
considered nnd n' the corresponding s~mple number. We will heve
<y nt<n,
Then it m~ry be shown that in rendom s-mples in which both n! snd n
are fixed, Py follows the usual binomial distridbution adbout the
corresponding pe. |
Whot is kmpﬁening cen be indicated by appealing to sn exemple.
Suppose a populntion consists of the 5 elements A B C D E, where D
and B are of no interest. Then, N! = 3 with N = 5, Samples of 3 are
t~ken. Thg possible samples may be grouped according to the value of’
n'. ADE, BDE, ~nd CDE give n' =1, ABD, ABE, ACD, ACE, BCD, and BCE
yield n' = 2., ABC giées n' = 3. By averaging over the.ten samples, or
over any group with fixed n', it is easy to see that an unbiased estimate
of say AJ/(A + B + C) , will be obtained.

Eence,

E(Pnt/na n') = d/N' (25)

where ¢ = Humbers in the classes in the population corresponding to
the clnsses in the semple used in forming the numerator for calculating

Pte Further, for the varisnce, we heve

_ _ N'-n!
V(pn'/n,n') ==y, P q/n' (26)

With these results we can now apply 211 the previous developements of
this chapter. VWhen normal theory is applied the confidence limits

become

Ntep! P
P = pn‘ + t(@)/nz,_!ll ! (27)

Now, we note two points:
1) While ¥ is known, N' in general is not known. Quite often it

is clear that n'/N' is negligible, In that case, we use



P=P, ft q/nt . (272)

2) If it seems advisable to make » finite population correction,

we may assume that N'/N is estimated by n'/n., Then we can use

P=P|it/:'§:%——u . (27'b)

n n!

Notice that n' still appears as the divisor for p q in (27b).

(6) Bartlett, M. S.

"Subsampling for Attributes" ' Supplemental Journal of the
Roypl Stntigtical Society. Vol, IV, No. 1, 1937,

(7) Clopper, C. J. end Pearson, E, S,
Biometriks 26:404 (1934)
(g8)simon, L. E,

"An Engineer's Manual of Statistical Methods" John Wiley &
Sons, New York, 1941.

(9)Snedecor, G. V.

"Stntistical Methods" 4th Edition, Iowa State College Press,
Ames, Iowa, 1946.

(10)St~tisticel Research Group
Columbia University

"Selected Techniques of Stetistical Analysis" Edited by C.
Eisenhert, M. W. Hastay, and W. Allen Wallis, McGrew-Hill,
New York, 1947.
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STRATIFIED RANDOM SAMPLING

5.1 _Degcription. This type of sampling follows the general procedure
of simple ran@om sampling, but takes a preliminary step. The population of
size N is first divided into sub-populations of sizes Nl' Nz . o e Nk. These
sub-populations are called strata. IExamples of such division are £he ﬁse of
counties within a state, or the separation of the labor force into factory,
farm, mine, professional, and clerical groups. When the strata have been |

determined, a simpie random gample is then taken from each stratum independ-

ently. The sample sizes within the strata are then nl} Doy o o ¢ Do '

Stratification is a common procedurerin sampling. The reasons for 1its

general usage are

(1) If a heterogeneous population is divided into homogeneous strata,
the accuracy of the sample can be increased, as will be shown
later. .

(2) The administrative considerations relating to the surveyt

(a) The location of the field offices of the agency conducting the
survey may require a division of the area by civil or political
units. '

(b) Publication policy often requires that data be available for
sub~areas of the population.

(c) Action to be taken on the basis of the survey results may not
apply uniformly to the whole aresa.

5.2 Theory for Stratified Random Sampling. The notation is as follows,

Let §h be the sample mean and y , be the population mean in the j th

J rd

stratum. Then,

k
- _ 1 .. (28)
= —-=—- T N. .
Yb X J=1 J be

For the estimate of §P' we take

(29)

7 = L.
n ¥ =1 NJ ynJ
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In (29), we note that the eouation assumes knowledge of the NJ' Thus, more
information is required for stratified sampling than for the simple case of

an undivided population.

Next, we state that E(in) = §b. This result can be readily obtained by

application of Theorem la in each stratum.

Theorem 6: With §n defined as in (29),

N ,
- 1 2
v Z N, (N,~
(yh) = 2 & ( 5 nJ) oJ/n ' (30)
i - (2
where 2 ¥ (yij -~ ybd) -
g, = I = population variance
J 1=l N1 within the j th stratum,

Proof: From the definitions of 3'p and in in (28) and (29) we obtain

-— - _ _l— ’ - -
Then 2
' VG =B, - 5)
= —lg IN (EG -7 )2 + B (cross~product terégzl. (a1)
N° J ny “pd

Since a simple random sample has been taken within each stratum, previous

results can be applied. By Theorem 2, we have
-2 N-m oo
BF -7 .) = ———— /nj. (32)
ynj y?d Nj J/ d
The sample taken within a stratum is independent of the sample taken within

any other stratum, therefore,

E(Ernj - ipd) (}nm - ipm) = 0 for jfm. (33)

Inserting the results of (32) and (33) in (31) we obtain

(NJ - nj) ci/nj, the result as stated in (30).

V(§n) = "ig* 3 NJ
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When nj/3J is negligidle, (30) may be reduced to V() = 3 (N? c?)/nd (34)
N

For estimating V(§n), we do not know o?, but we can use the unbiased

= 2
estimate V(¥.) = L5 N (N -n) g/n (35)
¥n x< i o 3 J/ J
2 D - |2 .
where s =3 (y,, -y )° [/ (n; = 1) = estimated variance within the j th
J i=1 T4 nJ J stratum.

(Refer Theorem 3).

5,3 Optimum Allocation., We now examine the problem of allocating the
sample to the respective strata:lfhat is, the choice of nl, n2 " s e nk.
From formula (30), the Variance V of the estimated mean yn is seen to be a
function of the nye Similarly the cost C of taking the sample will also be
a function of the ny. The principlé which is used in selecting the nJ is to
minimize V for fixed C. Sometimes C is minimized for a specified V; it will
be found that this gives the same allocation as the minimizing of V for fixed
C.

5.4 Cogt functions. The form of the cost function depends on the type
of survey. While investigation of cost functions has been rather meager uwp

to the present time, the following type of function may serve as an example,

which might be a sa%isfactory approximation for some kinds of surveyse.

C=a +‘§ bd VGT+'§ ¢y n,

This function has three constituents.

general overhead cost of the survey,

il
1]

bj/;3 = travel cost within the j th stratum.
c.j nJ = costs that are proportional to the sample size within

the J th stratum (this includes the cost of enumeration).
Note that travel costs have been assumed proportional to the gquare root
of the size of sample. This approximation is based on work by Mahalanobis

(11) and Jessen (12)‘
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No gzenersl discussion of the optimum allocation for this cost function
will be given. Two simple cases will be considered. First, we suppose that

c, a constant. Then the cost function becomes

bJ = 0 and c‘j

(37)

C=a+c¢ (nl +n, 4+ ...+ nk) =a+¢in

2 J
Now Z n, = n, so we observe that C is proportional to n, the total sample

J

size, since the cost per schedule is the same in all strate.

For the second case, we consider that the total cost is proportional to
z cJ nJ, il.e., °J’ the cost per schedule, varies from gtratum to
stratum. Then we have

= + ) + * * [ ] L ]
c cl nl c2 n.2 ck,nk ) (38)

Cases I and II are presented beléw in Theorem 7 and 8, respectively.

5.5 Theorem 7: (Refer J. Neyman, Journal of the Royal Statistical
Society, 97 (1939) 558-606). In stratified random sampling, v(in) is small-
est for a fixed total size of sample if the sample is distributed with n.j
proportional to NJ OJ'

Proof: Using the Lagrangian multiﬁlier we have

k N

vg)+rc=t 3z 5 (L _1nF+ra)
“n > o1 Jd B, J J
Differentiating with respect to n‘j we obtain
.'__Nz 02
-—J_.._.'j__ +A=0
32 2
%

The solution for nJ gives

_ N. o!

I IS Sl

this result for n;j iIn both members we can simnlify the result since

is proportional to NJ cj. By summing

Z N, o

J=n=.__2_i.
VAN
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Substituting for \ we find the actual value of nj to be

N. o
- ——lj—--i—
ny =n 3 ¥y oy (39)

This result, due to Neyman, is very useful whenever the cost of taking
the survey (apart from the fixed overhead) is proportional (or almost so)
to the size of s;mpie. Note that Ry depends on the product of the size of
stratum and the standard deviaxiOn of the stratum. Other things being
equal, a larger samplé is ﬁeeded in a variable stratum. In practice the
values of oy will not be kndyn when the sample is planned. Usable estimates
- of them can often be made eiﬁher from general knowledge or previous exper-

)

ience with the population,

5.6 The Minimgg Variggcg,.CgsgI: Now let us re-write the variance

from (80) as

) Nz
V) = Az (-—;‘— - ¥)) o°

N2 3 J
2
N &£
el pg_d 3 1 sy, (40)
i vaa e N

In (40), we substitute the results‘of Theorem 7, i.e., the value of n, as

J
glven by (39). This yields for the minimum variance, Case I,

2
(z N, o.)
V(¥,) min. = ; J_J -~ _1 TN &

. 1
2 " v 5% (41)

5.7 Corollary 1 to Theorem 7: If the finite population correction
is negligible, the second term in the right member of (41)is small relative
to the first%. This gives

(z Nj cJ)z
v(yn)- min, = -z (42)
n
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Hence, the minimum standard error can be expressed as

Z¥N, o

s(?n) min, = 1 J_J | (42a)

VR

5.8 Corollary 2 to Theorem Y, Preportional Sampling. If o, = g, a

J

constant, that 1s, we have homogeneocus variance for all the strata, then

the optimum allocatlon occurs when nJ is proportional to N,. TFor under this

J
condition (39) reduces to

n /N = = n/N = a constant. : (43)

n
33 ZNJ‘
This type of sampling is called proportional sempling. With proportional

sampling the calculatien of the estimate is particularly simple, since

13

i a-—]:_(EN

n o H PR )

1 -
n @ nj Ynj

which is simply the sample total divided by the sample size., Thus, no

welghting is required. Such samples are described as §g1f~g§1gh§ing.

5.9 Theorem 8: Case Il of Optimum Allocation: Under the assumptions

of (38), above, i.e., cost proportional to c nj, the variance V(?n) is a

J
minimum for a given total cost if nJ is proportional to NJ OJA/OJ.

Proof: Thid is parallel to Case 1, Sec. 5.5. The quantity to be

minimized is

v(§~n)+uc=—§2 Z ¥, (NJ/nJ-—l) ot +A(Ee¢ (44)

n
J J J)
Differentiating and equating the result to zero we find
2.2y 2
(-F/n%) c“+ Ne,=0.
J/J J J

Then n J&~; NJ oj/VES .

Summing again in both members and sudstituting the result obtained for
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A, we obtain

n(N, o,//5)
- J vy
n'j E(NJ C{j/« '_cd) (45)

From the result for Case II, i.e., the variance is a minimum when n, is

J
proportional to NJ cj[JEB. we deduce a simple statement of vnrocedure for

stratified sampling with the cost conditions assumed:

In a given stratum, take more samples
a. If the stratum is larger
b. If the stratum is more variable

c. If enumeration is cheaper in the stratum.

5.10 Stratified Random Sampling from “Binomial T
We recall the discussion and theory presented in Sec. 4.i‘to 4,7, 'The
whole nopulation falls into 2 classes. It is degired to estimate the
percentage or proportisn in each of the classes. In aﬁratified sampling
from this type of population we wish to divide the population so that thé.
sub-populations, Qr strata, ére homogeneous. ’For example, the partition-
ing should put most or all of the "yes® answers in one group of strate

and the "no" answers in another group of strata.

The estimation proceeds as follows: We suppose ny sampled in the

J th stratum, and obéerve that gJ of the nJ fall in Class I. Then for
the estimated population proportion in Class I, we have

K N g

p = I J J

n j=1 XN n,

in order to estimate the variance we apply Theorem 6 and then Theorem 4.

(46)

We had

N .
-\ _ . 2 2 _
V(yn) = —§2 z NJ(NJ_nJ) cj/nj, By Theorem 4, oy -ﬁ—l:—I Pj ay -



- 32 -

Eence, with 128 defined as in (46),

N, (N, ~n) N
v = J J J J
3 J
When the finite population ‘correction can be ignored, we obtain
Vo) == TN p, qfn (47a)
n N JF3

To obtain a semple estimate of this variance, the observed values are

substituted for the Py and_qd of (47).

The optimum allocation for sampling from g "binomial type" population

ig as follows: Case I: With EnJ = constant, nJ is proportional to NJ cj.
Thus |
’&J , | (
n, =N —0u /P q 48)
J J ¥ - 1 J
J
Case II: Here I e, ni = constant, and n, ig proportional to NJ OJﬁJcJ.
Then we have
J N E q;
n, =N, J J (49)

R Ay

Note: The results of this section can be extended to the
"multinomial situation,"” refer Sec. 4.8.
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5.11 Relative Accuracy of Stratified Random and Simple Random Samvles.
If intelligently used, stratificetion will nearly always result in a smaller
variance of the estimated mean.than is given by a comparable simple random
sample. However, it is not true that any stratified sample gives a smaller
variance than the comparable simple random sample: if the values of the n;
are far from optimum, stratified sampling may have a higher variance. The
principal result is summarized in the following theorem. In this theorem
the finite population cor,rectiotx (f.p.c.) is ignored, i.e., terms in 1/N,,

nJ/Nj‘

. Theorem 9. If ny <Ny oy (i.e., the allocation is optimum in the sense
of Neyman) then for sampi;s of given total sizeAn, the variance of the mean,
¥n» for V opte K V ren.

Proof: Some preliminary notes are needed. When the f.p.Ce is ignored,

the formula for the variance of the estimated mean from a stratified sample is

1 Nj °§
V strat. = —=— I - (50)
N J
ol oy
If ny = (optimum allocation)
IN: o ’
J 3
this redvces to 2
(z N, o3)
V opte = —— - (51)
nN©
Y3
as previously noted, see (30), (34), and (42). Further, if n, =13
(1.e., sampling is proportional) the variance becomes
ENJ o? (52)
V prop. = 52
P nN
Now 1 f 5 (z N aj)z l (53)
- . o= i - 5
V prop. - V opt X XZNJ aJ ¥ } 3
L - 32 53
= 5 ZNJ (oJ o) (53a)
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This result shows that V opt. will always be smaller than V prop. The size
of the difference depends on the amount of variation in the °J’
We now proceed to the main proof. For the simple random sample

o°

n

Y ran., =

where 02 ig the variance of the whole population. But from an algebralc

identity,

(M-1) P =3 () - 1) o+ 2N, (7, - 'y'p)z (54)

and since terme in.1/Nj are negligible, this may be written

2 _ 2 = _ o2
N o®=3N of+ Z Ny (pr yp) (54a)
Hence, 2 ( ~ )2
T N, o TNy (yp5 - ¥
Y ran. = o - J_~J + 3 Mpd ho
n oN nN
- - L
TN (.5 ~ 7a)
J al P
=V e + (55
prop = )
T N; (o5 - 3)° £ Ny (Fpg - Tp)°
= ¥ opt. + J %) . - J \pJ P (56)

nN N
This nroves the theorem. It shows that the increase in accuracy from optimum
allocation arises from two factors: (1) elimination of differences among the
strata means, last term in the right member of (56), and (2) gain from optimum
allocasion over proportional sllocation (middle term on the right). This
second factor is to be expected, since a simple random sample allocates the

ny roughly proportionally.

Note: If the f.p.c. cannot be ignored, the result of Theorem 9 becomes

V opt. < V ran.,
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Provided that ' n
z (¥-N,) o
- - )2:> 344

z -
Ny Gy - 7" 2 ¥

(57)

This provisional condition is 'likely to be satisfied in almost all applications.
5.12 _An Example to Illugtrate Theorem 9¢ In Table 1 we present data

from a complete census of Jefferson County, Iowa. The population consisted of

2,010 farus. Here we show the data for average corn acres per farm. Thus,

the sampling unit 1le taken as one farm and the item on which the stratification

is based is size of farm. Seven size groupings were established.

TABLE 1

AVERAGE CCRN ACRES PER FARM BY SIZE OF FARM
JEFFERSON COUNTY, IOWA

Stratun Famm Corn Stratum Prop. Optimum 2
No. Size NJ Acres Total ¢ Samp- Njcj Allocation NJOJ
Acres Yp3 NJyPJ . ling ny -

n

J
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1 0-40 394 5.4 2127 8.3 20 3270 10 27141.0
2 41—80 461 16.3 7492 13.3 23 6131 18 81542,3
3 81-120 391 24,3 95156 15.1 19 5904 17 89150.4
4 121-160 324 34.5 115824 19.8 17 6613 19 130937.4
5 161-200 169 42,1 7110 24.5 8 4140 12 101430.0
+6 201-240 113 50.1 5651 26.0 6 2938 9 76388.0
7 241——— 148 63.8 9438 35,2 7 5210 15 183392.0
TCTAL 2,010 ;f=26.3 52,857 100 34,206 100 689981,1

The original dats are shown in columns (1) - (6). For a total sample size
of 100 farms, column () shows the sample sizes in the respective strata
for proportional sampling; column (9) gives the same data for sampling with
optimum allocation. Since the sampling rate, 100/2010, is about 5 percent,

the fepece will be ignored throughout.
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We proceed to calculate the variances of the estimated mean for three
types of sampling. The variances are exact, since the complete population

is known.

Simple Random Sampling:

- 2
The variance of the sample mean, y_, is V ran. = S, In order to
obtain 02, we may apply
e 2 - - \2
+ -
No“=2 L o) Ny (YPJ yb) (54a)

The first term on the right is given yy the sum in column (10), Table 1.

The second term on the right is given by summing the croas—products.for
colums (4) and (5), Table 1, thus, z{;.4 (2127) + . . . + 63.8 (9438{] '
and subtracting a correction term (52857)2/2010. which gives 557,007,1.
Summing the two terms, 689,981.1 + 557,007.1 = 1,246,988.2 = N o2, and ai-
viding this result by Nn, we obtain V ran. = 6.20. -The standard error is
then S.B. (ih) ran, = VIETEB- = 2,49, aﬁd the coefficient of variation, C.V.,
ig about 9.5%.

Proportional Allocation:

Using (52), we obtain for the variance of j, with proportional sampling,

¥ prop. = —68998L1 - 543,
N
Then S.E. (¥,) prop. =,/ 3.43 = 1.85
C. V. = 7.0%

Optimum Allocation:
Finally, the variance of y, for optimum allocation may be obtained by

using (51).

(32206)2 - 2.9

V opt. =
nN®

1.70

S.B.(y,). opt.

c. V. = 6.5%
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The comparison of sample size fequired to obtain the same accuracy by

the several methods 1s a useful measure of efficiency. For comparing pro-

.portional with optimum allocation of the sample, we take n = g‘gg x 100 = 118.

Thus, about a 20% larger sample is required with proportional samoling to
obtaln the same accuracy as given by a sample of 100 under optimum gllocation.

Trhe comparison of simple random sampling with optimum allocation gives

n = 6.20
2.80

accuracy as a_sample of 100 under optimum allocation. This result, 214, is

x 100 = 214 as the size of sample required to obtain the same

slightly biased becsuse we have ignored the f.p.c; the blas favors V opt.
because the size of the f.p.c. increases as n increases. |

5.13 Description of‘a Sample Survey: Since considerable background in
stratified sampling has been given, we now discuss an actual sampling problem.
A detailed description of this study is given by Deming & Simmons, Journal
of the Lmerican Statistical Association, March, 1946, Vol. 41, p. 16~33. The
survey, which used mailed questionnaires, was conducted in March 1945 for the
Office of Price Administration (OPA). The population consisted of a list of
140,000 tire dealers on record with the OPA,

The information to be obtained by the survey was (1) the number of new
truck and bus tires, and (2) the number of new passenger car tires, on hand
by the dealers. The previous information, which was available for designing
a sample, came from a falrly adequate census taken in September 1944 and a
sample taken in December 1944. Both the census end the sample were taken
oprincipally by mail, and apparently the clrcumstances were such that the
dealers replied readily by mail, |

In setting up a stratification, a problem is met that is common to
most surveys. There are two main items to be estimated--new truck and bus
tires and new passenger csr tires-~and a stratification that is good for
one of these may not be effective for the other., In this situation, one

may either concentrate on the most important item, or try to reach some
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compromise that will be reasonably effective for both items. Deming and
Simmonsg qhose the latter approach. JFrom a study of the previous data,
they found (1) that many dealers (e.g., in service stations) had only car
tires on hand (2) that dealers who had truck snd bus tires tended also

to bhave car tires, and that the number of car tires was roughiy propor=
tional to the number of truck and bus tires. Thils means that a stratie
fication of this group by truck and bus tires would be fairly cffcctive
for car tiros. Also, they found (3) that some dealers primarily handle

used tires. Those data led to the following classification of the pop~

ulation.
TABIE 2,
STRATIFICATION COF TIRE DEALERS FOR MARCH 1945 OPA SURVEY
Group Size of Degscription of group
Designation Group Dealers holding
A 27000  New truck & bus tires, except thosc defined
as "used tire"' dealers, group C.
B 40000 No new truck & bus tires, except those defincd
28 "used tire" demlers, group C.
¢ 18C00 Used tires »> 40, and < 40 new pass. or truck
N or bus tires,
D 2000 Large numbers of tires, %.c., Mfrs. outlets
B 2000 (Newly authorized dealers)™
*
F 24000 (Non-respondents of Sept. 1944 survey)
G 23000 (Respondents send1n§ blank returng in the

September survey)

*1t is to be noted that meny in Group F may be out of business and
that in Group G there may be many who have no tires on hand. The type
of stock held by group B is not known.

The second stage of the classification comprised a further division
of Groups A and B, The 27,000 in A were stratified by the number of new
truck nnd bus tires on hand with classes 1-9, 10-19, 20-29, etc. The

40,000 in B were separated according to the number of new car tires on

hand vith classes of 0, 1-9, 10-19, etc.
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The next problem was the allocation of the sample number or size, i.e.,
the ny, to each stratum. The NJ were known and, since this was to be a
mailed survex, the cost would be proportional to the NJ‘ Therefore, optimum
allocation would be obtained by making nJ proportional to NJ Oy Again, a
question arises. With two principal items of information to be obtained,
for which item shall the éllocation be made optimum~—truck and bus tires,
or car tires? The item selected was new car tires, and it appears to have
been a good decision.

The information on the relevant o's was obtained from the September and
December surveys. The values as given by the December survey are shown in
‘the following tables

TABLE 3,

STANDARD DEVIATIONS OF THE STRATA - OPA TIRE DEAIERS SURVEY

New Car Tires

Size in Number Mean Std. Dev. Ratio
T4 p: ¥ Y
of Tires on Hand Tp g ** oy oJ/y'pJ

Group A*

1-8 ' 14.8 18,2 1.23
10-19 21.0 26.3 - 1.25
20-29 34,2 %* 40.6 1,19
30-39 34.2 28.2 _ .82

avg, 1.25
Group B kk¥k
0 1.0 3.6 3.6

1-9 6.7 8.2 1.22
10-19 13.0 9.9 76
20-29 24.7 11.4 A6
30"39 32.0 12-4 039

avg. 75

ﬁ}roup sizes are based on holdings of new truck and dus tires.

**Group means are calculated from holdings of new car tires.

***6roup sizes in B are based on holdings of new car tires.



- 40 ~
From these data on the means and standard deviations in the strata, two

general assumptions were made., For Group A, Deming and Simmons took

9% = 2 You and for Group B, they took %

assumptions, though a greater varlation in the survey to be taken in March

= §PJ‘ These were conservative

was anticipated,

Now, we consider the problem of determining the size of sample for this
survey. The accuracy to be obtained was specifiied. The coefficient of vari-
ation for total number of new tires on hand to be attained by the survey

was éet at 1.5%, or ,015.

= o, NJ/k where k is an unknown constant to be determined,

Let nJ
2
. 2 §j o} g
then, V(7)) = —i (omitting the f.p.c.).
X n ,
J

Substituting for n,, we obtain

v(in) =——§'2—2NJ OJ .

In this survey the estimate wanted was the totpl number of new tires on hand.
We write this estimate as Tn = N §n° Hence, V(Tn) = k = Nj aye At this
stage we introduce from the preceding paragraph the assumptions on the o's

for Group A and Group B, and write

/ - -
v (Tn)-—lc(i 2 NJ Y3 + g Nj Yp3 w%ere the summations

are over the strate in Groups A and B, respectively.

=k (2 T, + TB)'

In this form, TA and TB indicate the population totals of number of tires in

the groups, From the last result, we write the coefficient of variation of

JE ST

Ty +Tp

Tn as

c.V, (T,) =
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Before proceceding further 1t was necessary to estimate the number of new
tires expected to be found on hand in the March survey. Such estimates
were based on the numbers found on hand in the September and December sur-

veys. Dening and Simmons estimated

T, st 1.6 x 10°
end Ty at 0.2 x 10°.
With the C.V.(T ) already set at .015, we can now solve for k. Therefore,

2 12
.016% . (1.8 10
K = = 7 (1.e) x = 214,

3.4 x 108

However, k was actually taken as 200 in order to simplify further calculations.
This value of k required a sampie size in Groups_A and B of about 1Z% which
strictly requires the use of the_f.p.c., although it was omitted.

The allocation of the sample to the strata is now straightforward. .In
Group A we have nJ/NJ = thg fraction to be sampled within a stratum = J/k =
2 5@3/200. .From this relation we obtain the percent sampled in the strata
of Group A = §?J° .Similarly, the percent sampled in the strata of Group B =
iPJ/Z‘ _An estimate of the 5@3 for each of the strata in Groups A and B that |
would be found in the March survey then finally determined the strata sampling
rates. In general, these values, ibd’ were estimated from the December survey
results. Table 4 below shows the sampling rates obtained for the strata in

Group A.
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TABLE 4,

SAMPLING RATES IN GROUP A - OPA TIRE DEALZRS SURVEY

Size N Estimated §b3 Sampling
J ~ Rate
for March

1-9 19,850 15* 1l in 6
10-19 3,250 22%% l1in 5
20-29 SSJ
20-39 1,613 3 lin 3
£0~49 42} .
50-59 894 5 _ l in 2
60+ 1,662 7 (100% taken) 1inl

27,269
*(Docember valud - 14.8) **(December value - 21)

The method employed for taking a random sgmple of 3,300 out of the
19,850, 600 out of the 3,250, etc. Qas as follows. The members of each
stratun were aVailéble on cards showing addresses. A random card was chosen
as & starting point and all succeeding members of the sample were taken
systematically at the designated sampling rate. Thus, In the first size
group in Table 4, every 6th card was chosen thereafter. This method of
sampling is known as systematic sampling and will be discussed later. In
computing sampling errors, the authors assumed that their samples were
equivalent to simple random samples within strata. Thelr comment on this
point is- tliat the sampling crror of thelr sample is probably elther equal
to or slightly lower than the result given by the use of stratified random
sampling formulae.

The remaining strata, i.e., Groups C through G, were handled as follows:
Group C - "Decalers holding more than 40 used tires": They were stratified by,

aumber of used tires, 40-49, 50-59, etc. Then a 254 sample, or 1
in 4, was taken in each stratum,

Group D - Manufacturers outlets: Y. = 75 for this group on previous survey.
A 100 sample was taken,

Group Z - Newly suthorized dealers: One thousand new dealers were authorized
between September and December. Hence, the size of the group was
estimated as 2,000 for March, A 106 sample was taken.
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Group F ~ Non-responses in September 1944: This group comprised 24,000
dealers. For the December survey a 4% sample (n = 997) had
been taken from this group. The sample was classified into
these categories:

(1)~ Out of business 217
(2) Unidentified 310
(3) Located and schedule returned 470

The (3)rd category showed 11.9 new tires on hand per dealer in December.
. This indicated that Group F as a whole held many new tires. Determination of
. the sampling rate for Group F then followed this reasoning: -Vp‘ > 11.9 (470/997)=6
from vhich o was estimated as 3 ;P or approximately 18. By using the relation
. nJ/NJ = oJ/k = 18/200 = 9% was obtained as the sample size in Group F. This
volue was deliberately cut to 5%, bocause of the difficulty of actually se~
curing the sample from this group, i.e., greater cost.

Group G ~ Dealers sending iﬁ blank returns: This group was assumed to
have few new tires. A 3% sample taken in December showed only 2.3 new tires
per dealer. The comparison of this value with the first two strata of Group
B, which had similar means, indicated that o = 2 }@ might be a reasonable
assumption., Again, the application of nJ/Nd = od/k gave -gégsgl—— = 2,%%
sample. It was decided to take a 35 sample of this group again for the March
3o a'sh) 29

Summary? Ehe résults of the March survey indicated that the desired pre-
cision had been attained. The example illustrates how sampling theory is

combined with data from previous surveys to plan a new survey efficiently.

5.14 Zstimation from a Sample of the Galn Due to Stretification: The

formulae in Section 5.11 enable us to estimate the gain in accuracy due to
stratification when a complete census of the population has been made. 4
similar estimate can be obtained when a stratified rendom sample has been
taken. This estimate gives an appraisal of the utility of the stratification
that was adowted in the survey. We will ignore finite population corrections

4
h

in this gection.
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The data avallable from the stratified sample are the values of Nﬁ, nJ,

§nJ' s? (estimate of the within-stratum variance o?). With the f.p.c., ig-

nored, the estimated variance of the mean of the stratified sample is

2 2
¥y o8y

23

13

") y (58)

Estd., V strat. =

where WJ = NJ/N‘
Je wish to compare this with an egstimate of the variance of the mean

that would have been obtained from a simple random sample. Now

2 - -\
T (Ny-1)05+Z N, (Fo4 ~5.)
V ran, = —k : J J_7pJ P (59)
7 (¥ - 1)
Since terns in l/NJ are negligible, this may be simplified to
Vrean == [zW,2+2W, (5, -7)° (60)
" n I J V¥ps " p

From the results for the stratified sample, there is no difficulty in
obtaining an estimate of the first term inside the bracket. The second term

requires investigation, since ¥,4 and ip are not known.

P
Now o2
Ynj = 5;133 + epys where ‘énjkis an error of sampling with V (ey,) = nj
nence 02
=24 _ = J
E (32 = yf)d + > | (51)
Thus -
W,
-2\ _ ~2 J J
BT (W §) =Ty o, 42 7 (62)
Also
E Wy ;nja-zwj P (63)
2 of
Eence - - .2 L) j
B {2 Wy ynj}z = @ Wy F,)7 +E JHJJ (64)
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Subtract (64) from (62).

2
W; o
- - =2 - b =2 - 2 J J
W - 2'. W = W -— <+
BBy Foy - Gy a7 BV gy - By )T e —
W? 02
-3 J (65)
2J
It follows that an unbliased estimate of
- - 12
P ) -
3 py - p)
is given by
2 2 2
W W
-2 ~ 12 J 83 J 8y
- - ————t 4
A=z Ynd (e Y ynd) 0y z n, (66)
Finally .
r 2
Estd.Vran.=-—1-lE st +qQ (67)
n J
L
In order to illustrate the ccmputations, we present a numerical example.
The data are taken from the CPA Tire Dealers Survey as reported by Deming
and Simmons (refer Sec. 5.13).
TABLE 5,
DATA AND CALCULATIONS FOR ESTIMATING GAIN DUE TO STRATIFICATION
GROUP A - CPA TIRE DEALERS SURVEY
- 2 <l 2 2 -
Size of N n ¥y 8 W WS s%/n, W,s%/n, W.¥
Stratun J J nJ J J J 73 A L | Jn
(1) (2) (3) (4) (5) (6) (7) (8) (9)
1-9 19860 3000 4,1 34,8 .8032 .00748 00932 3.29312
10-19 3220 600 13.0 g2.2 ,1315 00266 02021 1.,70950
20-29 1007 240 25.0 174.2 ,0407 .00085 02085 1.01750
30-39 606 _230  38.2 320.4 L0245 ,00084  .03413 _,93590
4170 1.0000 .01183 .08451 6.95602
From the data in Table 5, we find
2 2
V strat. = I W§ sJ/nj = ,01183 (68)
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Now, —
. L 2 S o2
V ran. = N EWJ sJ+ZW‘,j (ypj—yp)
=_.l._ + e _"'2
= | 55.02 + Z Wy (Fpy yb) . (69)
L

The second term in the brackets in (69) we estimate by applying (66).

- =2 = 2 2 2 2
Q=132 wJ Yoy " (z Wy ynj) -3 wJ sJ/nJ + ; wJ sj/nj

= 96,91 - (6.95602)2 - .,08451 + ,01183 = 48.45 (70)

Then,

1
41%0

¥V ran, =

(55.02 + 48.45) = ,02481 |, : (71)

whereas V strat. waé.701183.
The redvction from V ran; exceeds 50%, since the ratio of the variances is
.01183/.02481 = .477.

Simplification when 03 is constant and sampling is proportional, In
this case, which often arises in sampling field_experiments, the results
simplify considerably.

We have

N
= = -5 = WJ in all strata

2
oJ = constant which we write as = o,
This is estimated by the pooled mesn square within strata, 83 . Then we
have

. (72)

w2 2 2
- J °w Sy
Tgtd, ¢t V strat. = 2 . = =

J .
1 Eg . Q] (73)

from (58), (66), and (67). The quantity Q now becomes

Estde V ran.

- - .2 Sw
wm ko Gy W) -

. (74)
w n
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Hence,

. 5 _ S o2
Sstd. Vren = 5 Tay Gy - F) ¥ -kt ) o (75)

This quantity is easiiy calculated from an analysis of variance of the

sample data into "gmong strata" and "weiften strata'.

Analysis of varlance for the gtratified sample.

: d.f. 'MQSO 2
Among strata (x - ;) B=Z nj (ihj - ih) [ (k1)
Within strata (n - k) Wa gl

w

From this the formula (75) may be written

Estd. V ran, = -15 {(k—-l) B+ (nk+1) VW (76)
n
. while
Eatd, V strat. = -%— W (77)

Examplet: In sampling a field experiment for estimating number of wire-
worms on ecch plot, the plots were divided into halves and three random
samples of soil were taken with a small boring tool in each half., (The
sample was 9" square to a depth of 5"), There were 25 plots in the experi-

ment. The analysis of variance of numbers of wireworms was as follows,

'dlfC Mls.
Between strata (half-plots) 25 90.76 = B
Within strata 100 38.44 = ¥

Note that the conditions in the example are slightly different from
those in the theory presented above. Each plot represents a separate pop-
ulation, divided into 2 strata. Thus k = 2 and n = 6. The enalysis of

variance gives the combined results for 25 stratified samples of this type.

Est. V strat, = ———?;—- = 6.41
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Est. V ran, = ?sjé_ B+ 5W] = 3%_ 90.76 + 5(38.44)] = 7,86

R.E. = 7.86/6.41 = 1.23,
Thus, stratification into halves increased the accuracy of the experiment by

slightly under one-fourth.

5.15 Confidence Limits and Sample Size for Stratified Random Sampling:

The variance is more complicated with stratification than with simple random
sampling. (Refer Sec. 3.1 ff.) Functionally, we may express this variance
in general as

V(?n) strat. = f (OJ' NJ’ nJ).

After the determination of the strata, the first step is to allocate the
sample to the strata, or to determine the ratios nd/n. When thig has been

done, we may write the variance as a specific functlon
WF) =¢ (cj. NJ, n).

At this stace we note again that either the o's must be known or good
estimates of them must be available., Then the confidence limits are
¥ t t(a) /¥ (§n) . To determine sample size, we equate tla) J/ V (§n) to
d, the specified confidence limit, and solve for n.

As an illustration of the above procedure, consider Case I of optimum
allocation with ¢ = ¢ = a constant. In (41) the minimum variance was ex-

pressed as

(£ N, 0,)2 .
- - J7J 2 :
v (y,) min. = - - SRR B (21)
Therefore
£ () / (z ¥y oj)‘Cj 5
— = - Z‘.NJ o = a (78)
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From (78) we obtain the solution for n as

N, 0.)°

n = > J _J 5 (79)
N2 4 +T Ny o

t2(a)

As a first approximation, the finite population correction is neglected,

This gives
t2(@) (2 ¥, o,)?
° ¥ a° (792)

When n /N is not negligible, n is calculated directly from (79).

An interesting corollary can be derived from (51). Suppose o, = o =

J

a constant. Then we have

o® N2 t2(a) o°fa?
n = =3 = (80)
2 1+ -

This result has the same form as was derived for simple random sampling.
Thus,
n, = tz(o.)'oz/d2

and

Do

1+n /N
The assumption that S is constant is not unreasonable for some types of
field crops or soil samplings. But the sssumption is less plausible in
human sampling, e.g., business and economic inqui;ies. where the 03 are
usually quite variabdle.
If prooortional sampling is to be employed, the sample will be allocated

according to the size of the strata, i.e.,
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and then

As shown in Theorem 6 the variance for a stratified sample when we do not

have optimum allocation is given by (30), Hence, we may write

5 ) orop. = -k - ny)
v(yn) DTOP Nz z NJ(NJ nd) o"j/nd . ) (81)
NJ n
Substituting for nJ in the formula for estimating V prop. we obtain
N
£ (o) /Nzndoﬁ . | |
- " = TWyoy = 4 (82)
If n is solved for in equation (82) the result ia
2 2
t(a) TN
| (@ 2 ¥y of
NZIN, o 2y
a
nE T e — = ) (83)
W% +gy 2 . %) Ny &
2 J 3 1+ J.
t“(a) Y
Similarly, by ignoring the finite population correction factor, a first
approximation becomes, from (52),
?() = Ny o?
n, = 3 (83a)

a N

1f nO/N 1s not negligidle, n must be celculated from (83).

5.16 Proximity as a Basis for Stratification: In Section 5.1 one of
the advantages presented for stratified sampling was the possibility of
securing increased accuracy from the sample by di%iding a heterogeneous
population into homogeneous groups. Succeeding sections have shown how this
is obtained. The question arises, "What criteria should be employed in
stratifying a given population which is to be sampled?"

So far as possible, the criteria should be such that each stratum is

homogeneous with respect to the items that are to be obtained in the survey.
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Sometimes the most appropriate criteria are rather obvious from the nature
of the survey; in other cases investigations are conducted in order fo com-
pare the effectiveness of different criteria. Frequently a compromise must
be adopted, since the criterlion that gives a good stratification for some
items in tﬁe survey is poor for other items that seem equally important.
Discussions of bases for stratification for economic i{items have been given
by Stephan (13) and Hagood and Bernert (14), and for farm items by King and
McCarty (15).

One »rinciple that frequently holds is that adjacent sampling units
are more alike than sempling units that are far apart. Heﬁce. proximity
of the units, or a geographical division of the population is used as a
bagis for stratification.

To indicate the results given by this procedure we shall consider
several examples. The comparison of geographical stratification with simple
random sampling may be made by calculating the relative efficiency. BHere
the relative efficiency of the stratified to the simple random sample is
defined as the inverse ratio of thelr variances;that.is, the variance of
the mean from the random sample is divided by the variance of the mean from

the stratified semple. Thus, R.E, = Y _randon (84)
V strat,

In (84) equal sized samples of n are assumed for both methods, simple random
and stratified random sampling. When the finite population correction is
negligible, (84) also gives the relative sizes of sample that must be taken
to give the same variance for the estimated mean., This can be shown as
follows! Sunnose that the réndom sample is increased in size fron n to

rn. Then, the variance of the mean of the random sample becomes ozlrn or

V random

- « Now, if r is chosen so that v rgndom = V strat., we

obtain
r= V random = R.E. (85)

V strat.
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As the first example, we consider a problem in the counting of forestry
nursery seedlings, refer F. A. Johnson (16). The seedlings were grown in
long narrow beds. Sampling units were narrow strips across the beds. The
number of seedlings in eac£ sampling unit was determined by counting. Each
bed was divided into about 20 strata. The pertinent results for comparing

the samiling methods are given in Table 6.

TABLE 6.
' Twvoe of Seedling’ R.E, or r _ !
1 3
' Bed #1 Bed #2 1
! 1
' Silver Maple 1.29 1.49 '
-t American Elm 2.79 1.32 !
! White Spruce 1.16 1.88 !
1 ]
t t

White Pine . 1.15 =

Table 7 shows results obtained for a number of typical farm economic
items. In these 1nveét1gations different sizes of strata were compared:
townshios, four-township blocks, coﬁnties, and type-of-farming areas within
a state., A mean relative efficienéy was calculated by averaging the indi-

vidual relative efficienciés for each item.

TABLE %,
. '
State No. of Twp. 4-Twp. County Type of State !
Items farming '
area '
t
Iowa - 1938 18 115 - 100 96 Y !
Iowa - 1939 19 121 - 100 97 9l !
Florida - 1942 . '
Citrus fruit area 14 144 119 100 - !
Truck forming area 15 111 - 100 - !
California - 1942 17 113 - 100 a7 !
1

*Average relative efficiencies were converted to a relative basls in each
case b taking the county value as 100. Refer: Jessen (12) and Jessen
& Houseman (17).
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In both examples the increases in accuracy from geographic stratifi-
cation are moderate rather than large. This appears to be typical of re-
sults with geographic stratification.

5.17 Zffectg of Errorg in the Strata Totalg: It frequently happens
in practice that for some desirable type of stratification the strata totals
Ny are not known exactly, being perhaps derived from a population count that
is out of date, or from another samplé. Definite statements about the con-
sequences of tasing a stratification upon erroneous weights cannot be made
without considering particular cases. A few conclusions of a general nature
can, however, be drawn.

For sim.licity, finite population corrections will be ignored and the
cost per unit is assumed the same in all strata. If the NJ were known, ny
would be chosen equal to nN, oJ/Z P oy- The sample estimate of the popu-
lation mean would be I NJ §nJ/N, which may be written I WJ shj' Its var-
iance simnlifies to

(= Wy oJ)2

(86)

n

Ingtead of the true stratum proportions W,, we have estimates Wj‘ The
sample estimated mean is T wy ind" The first point to note is that this
estimate is biased. Its mean value in repeated sampling is Z v §pj,'
while the true population mean is T Wy §?J' The bias amounts to
z (wJ - Wj) iPJ" Consequently, the error variance of this estimate contains
two compohents: the variance about its own mean and the square of the bilas.

If optimum allocation is used (with, of course, the N.j replaced by their

estimates) the first component is (T W od)zln. -The total variance is

(Z WJ OJ)Z

- 2
+ - 7
A more general form of this expression was given by Stephan (13).
He points out that the first term in (87) will usually be about the same

size as (86) - they are exactly the same
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if the variance is the same in all strata. The loss of accuracy from
incorrect weights thus depends malnly on the size of the blas, which in
individual cases might either be small or large. Further, for any given

set of erroneous weights, the loss varies with the size of sample taken.
This is so because the 'bias' compenent of the total variance is independent
of the size of sample, With increasing sample size, a stage is reached
where the 'bias! term predominates, and where the stratification would be
less accurate than simple random sampling.

The nreceding discussion does not help much-in considering whether to
gstratify in a survey‘where the weights are known to be in error, because
the size of the bias term cannot be predicted. Occasionally a standard
error can be attached to the estimate of each NJ! from knowledge of the
process by which these were estimated, If the estimates of the NJ are
independen?, and independent of the ?ﬁd, the average value of the bias

component of the total variance is roughly, refer Cochran (18),

E (ypy - Svp)g v (NJ)/NZ (88)
where V (Nj) is the variance of our estimate of Ny. This quantity measures
the expected increase in variance due to errors in the Nj'

King, McCarty and Mc?eek (19) applied this formula in research di-
rected towards the estimation of yield per acre, protein and test weight
in the wheat belt. They discuss the advisability of stratification by
districts within each state. The total acreages NJ for each district
were themselves estimated by a sample survey, so that some knowledge of

the V (Nj) was availabdble.

5,18 Case Where the Strata Cannot be Identified in Advance: In

certain common tynes of survey it is not possidble to tell accurately to
what stratum a sampling unit belongs until the data have been secured

from the unit. For example, in an election poll it may be useful to
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stratify according to the individusl's vote at the last election., This
will not be known until the individual has been contacted. A similar
situation arises in a greater or less degree when stratification is by
factors sﬁch as income, occupation, religious affiliation, ownershin of
telephone, etc. Of course, in such cases it is also likely that the stratas
sizes Nj may not be known exactly: we will, however, assume for the present
discussion that reasonably good estimates of the NJ are avallable.

One nrocedure that can be used is to take a simple random sample of
size n, Then clsssify the units into the strata on the basis of the infor-
mation obtaincd about them. If §hJ is the mean of these units that fall

in the j th stratum, use as an estimate

?w = I NJ §n3/.N v (89)

In other words we use the true strata sizes azs weights to obtain a welghted
mean, instead of taking the unweighted mean of the sample as our estimate.
If the sample is reasonadbly large, this technique is almost as accurate
as proportional stratified sampling. Let mJ be the number in the sample
that fall in the J th stratum, where mj will vary from sample to sample.

For samples in which the my are fixed,

2 %

—;—2- o o (90)

V() =

where the f.p.c. is ignored. The average value of this quantity in re-
peated sampling must now be calculated. This requires a little care,
since it could happen that one or more of the m'j were zero. If this oc-
curred, we should have to combine two or more strata before making the
estimatc. Thig would give a less accurate stratification and a higher
variance for §w. However, with increasing n it may be shown that the

probability that any mj is zero is so small that the contribution to the
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varlance from this source is negligidle.
If the case where ny is zero is ignored, Stephan (20) has shown

that to terms of order n"a.

()= 1 - 1 + 1 (91)

where WJ = NJ/N. Hence, substituting in (S0},

E {V (;fw)} = —%— Ty o§ + 0 (0 (9?)'

The leading term is the variance obtained with proportional stratified

sampling (Sec. 5.14).

5.19 Quota Sggpling? Another method that 1s»used for this probiem
is to decide in advance the ny values that are wanted from each stratum
and to instruct the enumerator to continue sampling until the necessary
fquota has been obtalned in each stratum. In the later stages of sampling,
this may require considerable work on the part of the enumerator since
most of the units that are contacted may fall in strata where the quota
has already been met. If the cnumerator chose the units initially at
random, rejecting those that in later stages were not needed, this method
would be ecquivalent to ordinary stratified sampling. The extra field
work required to fill every quota might be very substantial,

Ags this method is used in practice by a number of agenciéé, the
enumerator does not select units initially at random. Instead, he may
use any information that will enable the quotas to be filled quickly
(e.g.y such as that people earning high incomes are not likely to live
in slums). The object is to gain the advantages of stratification with-
out the high field costs that might be incurred in an attempt to select

units initially at random. The amount of latitude permitted to the
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cnumerators varies from case to case, Unfortunately little is known
about thc accuracy of such "quota" methods as used in practice, relative

to that given by more objJective approaches.

5.20 The Problem of Non-Response: In many types of survey, there

are certain unlts in the sample from which the desired information can-
not be obtained at the first attempt. With human populations, this
group'may be persons who are not at home, or do not reply to a mail
questionnaire. In crop surveys certéin fields in the sample may not be
ripe when the samnler reaches them. This 'non-resnonse' group consti-
tutes an important practicsl problem. To obtain information from it
ney require several attempts and be costly. To ignore it may result

in a sample that has a bias_of unknown dimensions. An ingenious anpli-
cation to this problem of the idea of stratified sampling has been
made by Hansen and Hurwitz (21).

The population is envisaged as containing two strata. One, of
size Nl containg units that provide the information at the first try.
The second, of size Nz, is the non-response stratum. The basic idea
is that the second stratum should be sampled at a lower rate than the
first, since the cost per unit is higher in that stratum. There is,
however, the complication that neither the values of Nl and Nz, nor
even the units that fall in the two strata, is known in advance.

The first step, in the simplest case, is to take a random samle
of n units. Of these let n, be the number that provide the data sought,

and nz the number in the non-response group. By repeated efforts, the

data are later obtained from a random sample of r, out of the n,. if
n, = kr (93)

the quantity k is the ratio of the sampling rate in the first stratum

to that in the second. The velues of n (initial size of sam>le) and k
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are chosen so as to give a specified accuracy for the lowest coste.

The cost of taking the sample 1is

C = + +
c,n * cmy +oeT, (o4)

«there the c's are costs per unit: co is the cost of making the first
attempt, while ¢y and c2 are the costs of getting and processing the

data in the two strata respectively. Since the values of n, and n2

i1l not be kmown until the first attempt is made, the expected cost

nust be used in planning the sample. The expected values of n, and

r, are respectively W.n and Wzn/k, where W_ = NI/N' Thus expected

1 1
cost is
. o)
con + ¢ Won + cZWZn/k . (¢5)
Let §1n’ §2 be the sample means in the two strata, resnectively,
T

where the suffices n, r are used as a reminder that the sample in the
first stratum is of size nl, while that in the second is of size rz.

ig an estimate of the population total, Hansen and Hurwitz take

Vg * ‘—ﬁ— {nl Vi ¥ P 3'21‘} (96)
Note that the second stretum receives a weight nz, although the sample
is only of size rz. This is done in order to obtain an unbdbiased esti-
mate.
The calculation of the variance of this espimate is not as straleht-
forvard as it might seem at first sight. For while n may bde regarded
and consequently r_ vary from sample to scuple as

2 2

vell as Srln and 'yzr. In fact, n, and n, follow binomial distri-

butions with probabilities NllN’ Nz/N, respectively. We will suppose

as fixed, n, and n

that k is fixed from sample to semple: l.e., it has been decided before-

hand to what extent the second stratum will be under-samnled.
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The easiest method of finding the variance is to introduce the

quantity §2n’ that is, the mesn of the whole sample of size n, from

the second stratum. We may introduce this quantity by expressing (96)

as follows,

= N Yo+ ¥ ¥ — (¥, - F 97
Ve n {nl Y1n n2 y2:1} n (yzr 2n) (97)
The first quantity is simply N times the mesn of a random sample
of n from the whole population. Its varlance is therefore
N(N-n) 02
n
where o is the variance of the whole population. Further, when vwe
find the variance of ys.'there will be no contribution from cross-
wroducts between the first and second terms. For if we average
yZn(er B yén)

over all random samples of size r_ that can be drawn from a fixed

2
sample of size Do, the average will be zero. Consequently,

2 ‘2

2 3 _ .
Ty = HEm) 2, ¥ pf2G _5)® (g8)
8 n 2r n

Consider the second term. If §2p is the population mean of the

‘non-response' stratum, we have

(er - yép) = (yzr - yzn) + (yzn - yzp) (99)
so that
£EG -7 )%=3@G. -7 )°+38 G -7.)° (100)
2r 2p 2r 2n 2n 2p

there being no contribution from cross-product terms for the same
reason as before. Now §2r i{s the mean of a random sample of size

by

5 from the second stratum, and §2n is the mean of a random sample
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of size n, from the same stratum. Hence, for fixed n, and Ty

2 2
(B - 1) op (N, - n,) c
, . = 2 2- "%
. =By, -7,) + 2, (o)
Na T, N, n,

2
where Oy 1s the variance within the 'non-response' stratum. This gives

- - 2 (n2~r)
EG, -7 )P (2ol y=g® 2 2.2 (k1) (102
2r 2n 2 - To n2 2 nz rz nz

from (93) and (101). Substitute in (98). Then

¥®-n) o ¥ 2
V(}S) = —/——— © .+ = (k - 1) o, E (nz)
- WEW) 2, ¥ o i
n nz N
= e s _ e . (103)
n n 2

The first component is the variance that would be obtained if all
n, in the non-response group were sampled: the second is the increase
from sampling only ré of the nz. The quantities n end k are then chosen
to minimize (95) for a pre-assigned value of (103).

The solutions are?

2 -—

N [02 + W, (1) cgj (105)
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where V is the value assigned to V(ys), the varlance of the estimated
population total. These formulae are identical with those given dy
Hansen and Hurwitz, though they appear on inspection to be slightly
different. The difference arises because these authors use divisors
N 2nd ¥, respectively when defining o° and OZ. whereas we have used
(#-1) and (Na—l).

and W _, If fairly close

1 2
estimates of these can be made from earlier experience, the estimates

The solutions depend on the unknown W

nay be used in place of the unknowns. ZEven i1f nothing is known in

advance sbout Wl and W_, the authors develop an alternative method

2
that gives in most cases a solution close to the optimum. ZExtensions
to stratified sampling and to ratio estimation are also presented.
5.21 First examplet This example is taken from the paper by
Honsen snd Hurwitz. They suppose that the first sample is taken by
moil, and that the response rate is 50 percent. Further, the variance
within the non-response group is the same as tﬁat within the whole
nopulation (this is unlikely to be exactly true in practice, but might
serve as a first approximation). If these assumptions are made and if

the fep.c. is ignored, the varlance of the estimated mean, from equa-

tion (103), simplifies to

¥ = of (k + 1)/2n.

Mhus all semples for which (k + 1)/n have the same value will provide
equal accuracy. As a standard of comparison, they choose an initial

semple of size 1,000, in which all 500 non-respondents are later

vigited: that is, n = 1,000t k=1, To obtain equal accuracy with

other samples, we must have
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Such semples are shown in Table 8 for initial mailings of 2,000 and
5,000 schedules.

The cost in dollars was assumed to be of the form

- . .
c (n +'4n 451-2) /10.

These costs were obtained by nssuning that the cost is 10 cents »er

qurstionnzire reiled, that the processing of a completed questionnoire

costs 40 cents and that it costs $4.10 to carry through = field inter-

vicw., Tre costs of the three samples described above are shown in

Table 8.
& TABLE 8.

SA-PLES OF DIFFERENT SIZES THAT LEAD TO SAME PRECISION OF
RESULTS, THROUGH JOINT USE OF MAIL AND ENUMERATION
METECODS ASSUMING A 50 PERCENT RESPONSE RATE

n n n T Schedules Cost
, 1 2 2 Tabulated
(1) (2) (3) (4) (5) (6)
1,000 500 500 " 500 1,000 $2,550
2,000 1,000 1,000 333 1,333 2,099
5,000 2,500 2,500 278 2,778 2,751

n = Number of questionnaires mailed out

n, = Number of mall respondents

]
]

Number of non-respondents to mail canvass

il

To Number of field interviews among the non-respondents

The middle sample is the cheapest: in the.first sample there is
too much sampling of the non-respondents, while in the third sample
toere is too little.

In this way we could determine the most economical samnle by

trying various combinations of n and k. Alternatively, by
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cubstitution in (104), we find that the optimum k value is 7.5 ,
or 2,739, This gives n = 500 (3.739), or 1,870. Consequently, the
optimum sample is such that 1,870 schedules are mailed initially. Of
the 9;5 that ar%ZiZturned, we enumerate by visitation 935/2.739, or
341, The cost will be found to be $2,096, It is evident that the
niddle of the three samples in Table 8 was very close to the optimum.

5.22 Second example: This is intended malnly to illustrate the
type of blas that arises quite commonly in samples taken by mail: it
is not an applicationlzf the Hansen-Hurwitz approach., The data come
from an experimental sempling of fruit orchards in North Carolina,
conducted in 1946. A list was available showing the number of fruit
trees for each grower having more than 100 trees, The object of the
sample was to obtain information about the number of peach trees and
their production of peaches. (More accurately, the object was to
devise and study methods for estimating such data by sampling).

A schedule was mailed to each member of the population. There
was less than e 10 percent resnonse. A second and a third mailing
were sent out: these together raised the response to 41 percent. The
returns to the three responses are summarized in Table 9. The prin-
cipal points of interest are: (1) the steady decline in the number of
fruit trees per grower in the successive responses, these being 456
at the first request, 382 at the second, 340 at the third, =nd 290 for
the non~respondents. The larger operators tend to resoond more
easily: (ii) Both the second and third requests were substantially
nore successful than the first,

After the third request, a visitation survey, which will not be
described in detail, was taken from the non-respondents. This survey
was stratified according to the number of fruit trees per county in

the non-respondent group and to the location of the county.
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TABLE 9.

ZZSPONSE TC THREE REQUESTS (F A MAILED INQUIRY SENT TO GROWERS

IN NCRTE CAROLINA HAVING 100 OR MORE FRUIT TREZS *

No. of No. of Average No.
Growers Fruit of Frult Trees
Treesg ber grover .
Growers on the mailing 1list to 3,241 1,064,899 329
whom schedules were sent.
Schedules returned unclaimed. 125 139,442 315
Remainder of Population 3,116 1,025,457 329
Response to first request 300 136,859 ' 456
Response to second request 543 207,662 382
Response to third request 434 147,387 340
Total Response 1,277 491,908 385
Tercent Total Response 41% 4%
Total Non-Respondents 1,839 533,549 290
?eréent Total Non-Respondents 5% 52%

*
Six counties of concentrated peach production were dealt with
separately, i.e., by a complete enumeration.

(11)

(12

(13)

(14)

(15)
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Systematic Sampling

6.1 We now consider a method of sempling, quite commonly used,
that differs markedly from random sampling. Suppose that therc are
= nk‘units in the population and that these are numbered. To se-
lect a sample of n units, we take a unit at random from the first k
units; and every kth subsequent unit. For instance, if k is 15 and
if the first unit drawn is number 13, the subsequent units are numbers
28, 43, 58; and 8o on. The selection of the first unit determines the
_wnole sample. This type of sample will be called sn "every kth" sys-
tematic sample.

The apparent advantoges of this method over simple random sampling
aresd " -

(1) It 1s easier to draw and often easler to administer without
mistakes. The saving in time of drawing may be quite large if slight
departures are made from the strict " every kth" rule. F¥For instance,
if the nnits are described on cards which have not been numbered but
which are all of the same size and lie in a file drawer, a card can
be drawn out, say every inch alongz the file, as measured by a ruler.
Thig operation is very speedy, whereas strict random sampling would be
rather slow.

(11) Intuitively it seems likely to be more accurate than random
serpling. In effect, it stratifies the population into n strata,
ramely the first k units, the second k units and so on. Ve might

herefore expect the systematic sample to be about as accurate as a
strotified random sample with one unit per stratum. The difference

is that with the systematic sample the units all occur at the same
relative position in the stratum, while with the stratified random
sample, position in the stratum is determined separately by rahdomization

within each stratum., The systematic sample is spread more evenly over
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the nopulation, and this fact has sometimes made it considerably more
accurate than stratified random sampling.

In practice, one varlant of the systematic sample is to choose
each unit at or near tﬁe center of the stratum: the idea being that
it will represent the stratum better than if it occurs near one end.
Jo trhorough investigation of the efficrcy | of this type of sampling
appears to have been made, and attention will be confined to the case
wiere the first unit in the sample is drawn at random from the first
k in the population., The sampling theory was first developed py
We Go ond L, H, Madow (22). It is rather more complex than might
have been expected,

6.2 Sampling theory: For simplicity in presenting the theory,
we assume thatiﬁ is exactly equal to pk, where n 1s the size of
saitple to be taken and k is an integer. In practice ¥ will be of
the form (nk + r), where r is less than k. This will disturbd slightly
the results stated below in Theorems 10 and 11, which are not exactly
true. The disturbance is probably negligidble if n exceeds 50.

Theorem 10. The sample mean ¥, 1is an unbiased estimate of the

population mean iﬁ'

Proof: This is rather obvious. Let the observations in the population

e ¥y yz, e« o s ynk, and let

= + [ . . . + . 106
By {yi Yitk i+ (a-1)k /n (106)

If vy is the observation chosen when we draw the random number be-
tween 1 and k in order to start the sample, then my is the correspond-
ing sample mean. Since every 1 between 1 and k is equally likely to de

‘seclected

E(mi) = <{ml tmg v ...t mkjr Jx .
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From (106) this is clearly equal to §p .

Variance of the estimate. The variance may be expressed in a
number of different ways. One form, due to the Madows (22) is given

in Theorem 11,

Theorem 11. The variasnce of the mean of the systematic sample is

2 n-1
V()= S N1, 2. % -a) o
(yﬁ) n 1{ N n d=1 (n )Jc)kd

where /?’kd is the non-circular serial correlation coefficient for lrg’

kd, defined by the equation

k(n-a)

k(n-d) °zf:lka - 121 Gy -V G - (107)

Proof: By definition,

k k
1 & =)Ll B <2
" 121 (mi Y ) P nml nyp)

V) =E G, -7)°

b 'k 1=l

But  (om-ny) = (yy-¥)) + Gy =90 * o o+ Gya(non) - ¥y

When this is squared and added over all k values of 1, the squared

terms amount to
Z, Gy = @) &

The cross product terms will be séen to involve every pair of observa-

tions that differ by a multiple of k. These may be grouped according

to the multiple of k., Thus there are k(n-1l) products from observations

that are k units apart: k(n-2) products from observations that are 2k

units apart, and so on, Consequently
1 ( - k(n-1) -
’ ngk i=1 1 P itk “p

k(n-2) - - k - 5 )
2B b)) g R v r2 B ) G
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When we introduce the serisl correlation coefficlents as defined in

(107), this becomes

n-1
v(F) = él S (8- o2+ 2k Z (n-d) p' o
n k 1 d=1 kd
A 2 %! ¢ L
= + = T () . (108)
n N n og=1 kdj
Note: For = random semple of size n, the corresponding result would
be _
2 2
v (; )y = o (N-—I‘.) - o (k-]_) .
7 Nn n.k

Fornula (108) shows that if the serial corrélation coefficients are
positive, the systematic samﬁle is less accurate than tﬁe random sample.
The formula alsé suggests that i{f the serial correlation coefficients
are negative and sufficiently large, the systematic sample is likely
to be more accurate. Since it ig difficult to visualize what values
the serial coefficlents will take in a particular population, no
simple general coneluslons about the efficrcy of systematic samnling
cer be drawn from the formula.

Theorem 12: This gives an alternative form for V(?n) which is

more suitable for comparisons with stratified samples.

V(3 ) = _N-n 03 1+ 2 ngl (n-d) @
Yol 7 N n { n d=1 e F (ka) w} (109)

where 05 is the "within-stratum" average variance, defined by

(k-1) o = 2 (y, -F.)
n{k-1 o, = 151 vy - o

Eﬂi being the meen of the stratum to which y, belongs. Further,

o

is the "within~stratum" serial correlation coefficient for

e (kd)w
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e kd, defined by

5 k(n-a) _
(k-1) (n-4) 9% € a)w = 121 (yi - yri) (yi fid T Tp, 1+ kd)

P;oof} This is similar to that of Theorem 11. Since

Yp, 1+(n-1)k °

we have

+ o * L] .. ‘
p yb’ i+k) (to n terms)

- nv = ..- + -
(nmy nyp) vy ~ ¥ {) (y1+k
The rest of the proof follows exactly the seme method as in Theorem

11, and will be omitted.

Note: For a stratified random sample with one unit per stratum, the

corresponding result is

2

(o]

v ()= _(N-n) w
¥, . -

Comparison with (109) shows that the systematic and stratified random
samples will have equal accuracy if the lag correlations within strata
are zero for all pairs of units that are a multiple of k apart.

6.3 Further comparison of systematic with ;Andom samplesg?: As

has been indicated, there are no simple general results about the
accuracy of systematic sammles relative to random and stratified
random'samples. Comparisons cen be made for specific populations
either by the preceding variance formulae or by direct methods.
Several are given by the iiadows (22). Two will be described briefly,
Linear trend: If the population consists golely of a linear

trend, we may assume that vy = 1. Since

N : N
12 o EmnEw) 5y e N1

=] b i=1 2
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2

the population variance o 1is given by

(F-1) o2 = __N(#1) (2N+1) o wB)® _  §@E-)

- 5 . (110)

Bonce the varisnce of the mean of a random sample of size n is

v = L¥em) | o - _aCk-1) nk(N+1) o (k-1) (3+1)
n nk . 12n 12

2 _
To find the variance within strata o, We need only replace XN

by k in (110). This gives

2
] 2
- _(F-n) ¥ = n(k=1) , k(1) = _(K-1)
strat N n - nk 12n 12n

The verlance for the systematic-aample may eosily be found directly.
It is clear that the mean of the second systematic sample exceeds that
of the first by 1, while the mesn of the third exceeds thet of the
second by 1, and so on. Thus the meons may be represented by the
nurbers 1, 2, 3, » « « «» K. Hence

- - \2 k(k°-1)
T (v - s ATl
V- 5) =

by o further application of (110}, with k for N. This gives

v o= 1)
sys 12

This result nmay be checked by applying the general formula (109)
to this population. It will be found that GD (icd) =1, for all 4.
w

From the formulae we deduce thet

v < v .
strat sys ran

Thus for removing the effect of an unknown linear trend, the systematic

sorole is much more effective than the random sample, dbut less effectlive
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than the stratified random sample.

feriodic trend: If the population consists of a periodic trend,
€+8«y a simple sine curve, the effectiveness of the systematic sample

dcphends on the value of k. This may be seen pictorially.
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In this representbtion; the height of the curve is the observation

yi; The sample points A represent the case least favorable to the
systematic sample. In this case k is equal to the period of the
sine curve. Every observation within the systematic sample is exactly
the same, so that the sample is no more accurate than an single obser-
vation taken at random from the population. This holds whenever k

is any integral multiple of the period.

The most favorable case (sample B) occurs when k 1is an odd
multiple of the half-period. Every systematic sample has a mean
exactly equal to the true population mean, since successive devia-
tions above and below the middle line cancel. The sampling variance
of the mean is therefore zero., Between these two cases the sample
has various degrees of effectiveness, depending on the relation
between k and the period.

Natural populstiong: A few comparisons have also been made from

natural populations. For instance, Johnson (16) studied 13 populations

in which the observations were the numbers of seedlings in successive
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feot in a forest nursery bed. In seven beds containing scedbed
stock of high variability, the variance of the mean of the systeomatic
sasmle was only abou? half that for the stratified random sam:le:
both were much more accurate than the simple random sample. Tho
rcsults for these beds appear in Table 10. In the remaining six
beds, which had more homogeneous transplant stock, the systcmatic

and the stratified sample were about equal in accuracy, both being
again superlor to the simple random Sample. For estimating the arcas -
under different types of cover (e.g., grass, woodland) from a nap,
Osborne (23) found the systematic sample twice to four timcs as
sccurate as the stratified sample. In these investigations the
stratified semple had a stratum size 2k, with 2 samples per stiratum
s0 2s to permit estimation of the sampling error, The recsults would
»arobadbly remain substantially the same if the stretum size were
rcduced to k. It may be anticipated that for populations where ¥y
shows 'continuous' variation--in the sense that observations ncar
onc another are likely to give similar results~the systcmatic sample
will often be more effective than stratified random sampling. 4
thoorctical investigation on this point has bcen made by Cochren
(24). A useful elcmentary discussion of systematic samples, with
eoplication to part of Johnson's data, has been given by L, H,

badow (25).
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TABLE 10,

VARIANCES OF SAMPLE MEAN NUMBERS OF SEEDLINGS
(F. A. Johnson's Data)

1

] "

t Bed Vran vatrat vsya Eg;iﬁzzgo;f vsys
: (1) (2)
'Silver Maple 1 2.62 2.01 0.91 2.8 2.5
t 2 3.26 2.19 0.74 3.6 2.9
'Americen Elm 1 25,7 9.2 4.8 28,4 12.6
! 2 20,8 15.8 15.5 22.6 18.6
'hite Spruce 1 13.4 11.9 5.5 17,2 11.2
' 2 8.0 4.8 2.0 11.6 6.4
Whitc Fine 1l 19.4 16.8 8.2 21.0 21.9

6.4 Estimation of the variance from a single sample: Given the

rcsults of a simgle random sample, we can céléulate an unbiased
ostinmate of the variance of the sample mean, the estimate being un-
biased whatever the form of the population, This useful property
does not hold for the systematic sample. This may be seen by mcans

of the 'sine curve' example, Let
yy=m+ asin (m 1/2)

where k=4 and i1i=1, 2, .. .4n. The successive observations

are
m+a, m, m-—a, n, nta, m M-2a, M « » o« o

If 1 = 1 1s chosen, all members of the systematic sample have the
value (m + a)., TFor the other three possible choices of i, all mem—
bers have the valwes m, (m - a), or ;o respectively. Thus from a
gingle sample we have no meens of finding out or estimating the
volue of a, since we observe only (m + a), m, or (m - a). But the
true sampling variance of the mean of the systematic sample is

a2/2.
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Consequently, no reliable estimate of the standard crror cen be
attached to a systematic sample, in the secnse that this can bc done
for a random samplc, What is usually done in prectice is to make
somo assumption about the nature of the population, and to use a
varisnce formula that will be reasonably unblased if the assurmtion
haqypens to be correct. For instance, if it is Dbelieved that the
obscrvations are ordercd essentially at random, the variance formula
for a random semple might be used. If it is believed that therc will
be differences among strata, but no serial correlaﬁion within strata,.

an cstimate such as
N-n n-1 2
(Nen) b - 2(n-1) (111
Nn ety SARE AR )

night be used, This cstimnte is likely to be positively biased, since
it conteinsstrate differences: it might not be far in error if dif-
ferences between nelghboring Qtrata were small, To deal with the
casc wherc serial correlation was present, Osborne (23) used a norc
corplex formula which secmed to work well for the type of natural
population with which he wes dealing., A type of formula appropriate
to o population with an exponential correlogram has been given by
Cochran (24), and an interesting general study of the prodblem by
vatorn (26). All such methods are, of course, hazardous, end should
be supplemented by detailed study, whenever possible, of the promertics
of thc type of population that is being sampled.

The application of two formulae of this type to Johnson's data
is shown in Teble 10 (righ hand columns). Mcthod (1) is the method
ziven in formula (111), based on successive diffcrences. It con-
sidcrably overcstimates the varisnce for the stratificd sample and
is scarcely within sight of the truc variance for the srstcmatic

sanple. Method 2 uses the estimate
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gﬁ-n) n=2 (

Nn i=1

2
-— + S’ .
¥y 2yi+k y1+2k) /S(n 2)

This would bec appropriste if the population contained a linecar
trcnd plus random deviations. Eowever, it also fails in this
case, where the population contained 2 quasi~continuous variation
of a more complex type.

An alternative approach that is being investigated by Yatos
is to take supplementary obscrvations along with the systcmatic
saziple. The extra obscrvations will be uscd to obtain morc infor—
nation about the nature of_fhe population and so to provide a more
reliable estimate of vaeriance. Results have not yet becn published,

though the method shows promise. -
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TYPE CF SAMFLING UNIT

7.1 Sometimes the population can be divided into units in ver-
ious ways. For example, we might regard a city as composed either of
a nunber of city bloecks, or of a number of households, or of a number
of pérSOns. Similarly, in soil sempling, the tool with which the
sanple of goil is extracted can be constructed of various sizes and
shaypes, each of which determines a different subdivision of a fleld
into units. A change in the type of sampling unit will usually affect
both the cost of tsking the ssmple and the accuracy. The determination
of the optimum type of unit is therefore of importance from the point
of view of reducing costs.

The optimum unit is that which gives the desired variance for the
sarmyle estimate at minimum cost. In order to compare two different
units, we must find the size of sample needed with each unit, and the
cost of taking this size of sample for each unit. It is quite often
found that when a given percentage of the population is sampled, a
large unit provides a less accurate estimate than a small unit. How-
ever, the sample tends to cost less with the large unit. The'siyuation
is not alwsys so: Hansen and Hurwitz (27) have pointed out that for
the estimation of the sex ratio, a household is roughly twice as
accurate as a person (for a given percent sampled), because of the
common presence of husband and wife in the same household.

7.2 A simple example: Johnson's data (28) for white pine seed-
lings provide a simple example. There were gix rows in the bed (or
population) and the rows were 434 feet long. The object in sampling
{8 to estimate the total number of seedlings in the bed. Clearly
there are meny ways in which the bed can be divided into sampling

units. The relevant data for four types of units are shown below.
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TABLE 11.

DATA FOR FOUR TYPES CF SAMPLING UNITS

Tvpe of Unit

One foot Two-feet One foot Two-
row row bed feet
bed
Ni = aunmber of units in pop. 2,604 1,302 434 217
o? = pop. variance per unit 2.537 6.746 23.094 68,558
Nunber of feet of row that can 44 62 - 78 108 .

be counted in 15 mins.

The units were (i) one foot of o single row (ii) two feet of a
single row. In both these cases it was assumed that the sample would
be stratified b& rows (one-sixth of the sample being taken from each
row) so that the variences represent variances within rows. (1ii) One
foot of the complete width of the bed and (ii) two feet of the complete
width of the bed, For these ceses it was assumed that simple random
samples would be taken,

Since the principal cost is that of locating and counting the
units, costs were estimated by a time study (last row of Table 11).

A larger bulk of sample can be counted in 15 minutes with the larger
units, since less time is spent in moving from cne unit to another.

Tre item to be estimated is the population total number of seed-

lings. In studies of this type, a population total is more convenient

to discuss than a population mean, since the mean per s.u. for a two-
feet Ded unit is quite a different quantity from the mean per s.u. for
a one foot row unit, whereas the population total has the s=me neaning
for 21l units. If the f.p.c. is ignored, the variance of the estinmated

population total is 2
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where i = 1, 2, 3, 4 stonds for the type of unit, ny for the nunber
of units in the sample and N; for that in the population. We want
this variance to be the same for all.units. Thus if the smallest
unit is chkosen as a standard, the values of the other n, that gilve

the scme accuracy as the smallest unit satisfy the equation

Ni 2 of

n = n e mem—— °
i 1 2
ol %

For example, the velue of Do comparable to ny in this respect is

- 1 6,746
n, = n_df ) 2 = ,665 n, .
2 14 7 oisan 1

These data are shown in Teble 12, first line.

TABLE 12.

COMPARABIE SAMPLE SIZES AND COSTS

i .

' Type of Unit i
‘ :

i Cne foot Two feet One foot Two feet !
' Tow row bed bed |
Compyarable values of n, n1 .665 nl. .253 n, .188 ny,
Comparable sample sizes n, 1.330 n, 1,518 n,  2.256 nf
(in ocne-foot row units) )
Comparable costs cy . 944 ¢, .856 cy 919 Sl
Relative net efficiency 100 106 117 109 ¢

The next step is to find the comparadle sample sizes in ternms of
gingle feet of row, since the cost data are expressed in these ternms.
For n, we nultiply the previous line by 2, because the unit contains
two feet of row, These data appear in the second line of Table 12.
It vill be observed that as the size of the unit inorenscs,the size of

éauple required to obtain equal accuracy also increaseatin fnct with the



- 80 ~
two-feet bed unit the sample must be 2 1/2 times as large as with
the one-foot row unit.

The cost of taking ny of the smallest units may be expresscd as

c; = n, /44,
since this is the time required in 15-minute intervals. Similarly

the cost with the second unit ig

1.330 ny s
—_—— = 1,33 = =,
e 330 x = cl 944 c1 s

as shown in the Table. All the larger units cost somewhat less than
the smallest unit. If we define net efficiency as inversely propor-
tional to cost, the relative net efficiencies are as given in the.
last line of the Table. From these data the one-foot bed width
appears to be the best type of unit of those compared,

Note 1. For examples of‘this kind.thé comparable costs may be
obtained directly without going through the intermediate steps. If
zy is the relative size of the 1 th unit to the smallest unit, the

reader may verify that the costs for equal accuracy are proportional

to
oy Ci‘/ zy

where Ci is the cost of taking a given bulk of sample with the i th
unit. Thus to compare costs with the first and third units, we

compare

2,537 = 0577 and _&3.«9.9_4. = ,0493 ,
1 x 44 6 x 78

since the one-foot bed is six times as large as the one-foot row.
Zote 2. The previous example might be criticised on the
grounds that whatever unit was chogen, the sample taken in practice

would either be a stratified random sample or an ‘every k th!
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systematic sample, whereas the comparisons assumed no stratification
along the length of the bed. When comparing different types of unit,
it is advisable to make the comparisons for the kind of sampling that
is éo be used: or if thls has not been decided, for the kinds that
arc under consideration. A change in the method of sampling may
change the relative costs of the different types of unit. A highly
cffective stratification, for instance, tends to make comparisons
more favorable to the larger units, though the influence of strati-
fication is not always in this direction. Some data on stratifica- .
tion as affecting the relative efficiency of large and small units
arc given for farm sampling by Jessen (17). In the same way, com-
parisons of type of unit will depend on the method of estimation

thet is used (see Section 9).

7.3 Comparisons from Sample Data: In the previous example the
veriances of the various sampling units were obtained from a complete
census. When only saﬁple data are taken, 2 slight change in the pro-
cedure is sometimes necessary. To illustrate, we consider a farm
sarmle taken in North Carolina in 1942 in order to estimate farm
ermloynent, For deteils see reference (29), In effect, the method
of drawing the sample was to locate points at random on the map, and
to choose as sampling unit the three farms that were nearest to each
point. Thus the sampling unit comprises a group of three neighboring
farms., This method of selecting farms gives a large farm a greater
chance of being included in the sample than a small farm, so that the
aversge ferm size in the sample tends to be biased upwards. Any
effects of bias will be ignored in the present discussion.

Thc sample was stratified, the stratum being a group of town-
ships that were similor in density of farm population and in ratio

of crodlond to farmland. Some deta for the sample taken in May are
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shown below.
TASLE 13,

SIZES OF POPULATION AND SAMPLE

! Population Sample !
t 1
! Ho, of strats 587 572 !
! TNo., of sampling units 72,849 1,397 !
' No. of farms 217,976 4,166 !
1 '

It will be noted that a few strate were not sampled: further, the
number of farms per unit was very slightly under 3 (this discrepancy
will be ignored). The sample was about 1.9 percent of the population.

From this sample we can compare the cluster of three farms that
wags actually used with the single farm. We shall not go into the
cost asvects of the comparison, the purpose being to show how to
eétimate comparable veriences. The first step is to compute an
analysis of variance of the sample data, shown below for the nunber
of paid workers.

TABLE 14.

ANALYSIS OF VARIANCE (NUMBER OF PAID WORKERS)

! a.f. mean square
1 !
Between units within strata 825 6.218 '
Botwecn farms within units 2,768 2.918 !
Total: Beotwecen farms within strata 3,593 3.676

1

This analysis is computed on a single-farm basise.

We wish to compare the accuracy of thé population total number
of »aid workers as estimatcd by (i) a sample of n individual farms,
(ii) a semple of n/3 clusters of 3 farms each. Bach sarple will be
stratificd into the strata that were used.

For (i) the variance of the estimated state total (ignoring

f.p.c.) is’Kz oi/n, where N is the number of farms in the state and
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2, 2
o) is the variance between fzrms within strata. To estimate o] »
it night at first be thought that we could use the mean square
betwecn farms within strata as found in the sample: that is, the
nean square 3.676 as given -in the last line of Table 14. However,
the samhle taken was not a random sample of farms within strata, but

a random sarmple of groups of three farms. This fact causes the

estinate to he blased.

2

An unbiased estimate of oy may be obtained by making an analysié

of variance, similar to Table 14, for the complete population.

TABLE 15.

ANALYSIS OF VARIANCE FOR THE COMPLETE POPULATION

H
! Between units within strata 72,262 6.218
! Between feormg within units 145,127 2.918
1
1

Total: Between farms within strata 217,389 4,015

The degrees of freedom are obtained from the data in Table 13.

The argument is that if we had analyzed the complete population, the

mean square in the last line of the table would be the exact value for

the variance between farms within strata., We do not know the popula—
tion values for fhe mean squares between units within strata or be-
tween farms within units. But the figure 6.218 obtained from the
sarple is an unbiased estimate of the former, and the figure 2.918

is an unbiased estimate of the latter. Hence an unbiased estimate of
the nean square of between farms within strata is

72,262 x 6,218 + 145,127 x 2.918 _
217.869 - 4.015.

- 2 .
if % is the variance within strata for the 'three-farn' unit,

the variance of the estimated state total will be

d.f. Estimated mean square'



because the population contains only N/3 of these clusters, and the
sample size is n/3.~ The figure 6.218 in the analysis of variance
is an unbiased estimate of og/s. since the mean square between the
cluster totals has already been divided by 3 to transfer it to a
single-form besis. Consequently, for the same total size of sammle,
the comparable variances for the two units are

2,015 (single farm) and 6,218 (group of 3 farms).

Thus the samplc size must be about 50 percent larger with the
cluster unit than with single farms. Consideration of costs would
molce the result more favorable to the larger unit.

7.4 A Variance Punction: Attempts have been made by various
authors, notably Jessen (12) and Mahalanobis (5), to dévelop a gen—
eral law which shows how the ssmpling error changes‘with the sige of
unite. Suppose that the smallest unit is called an glement, and that
the large unit contains M neighboring elements. It has been found
in several agricultural surveys that the variance ¥ between elenments

within the large unit is related to M by means of the forrmla

W= af g>0 , (112)
where A and g are constants that do not depend on M; In this rep-
resentation W increases stecadily as the size of the large unit
incrcases, the curve being concave upwards. A curve of this type
might be expected when there are forces that cxert a similar in-
flucnce on elements that are close together. Thus climate, soil
tyne, topography, access to markets, and so on tend to make neighbor-
ing frrms have similar features.

Wote that the formula applies to the variance within the large

unit and not to the sampling error for the large unit, the latter
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being derived from the veriance anong large units. We can derive
a corresponding relation for the sampling error. Suppose that
the population contains N elements, i.e., N/M large units. The
following analysis~of variance holds for the variation among ele-

dents in the population.

a.f, Mean square
Between large units X _ 3 B
M
.Between elements within large N_(M-1) W
units M
Between clements in the population (N - 1) ' T

Frpn this it follows,that-

N-M (N1} T - _NM-DW

M - M
Obviously the quantity T does not depend on M. Hence B is expressed
as & function of M and of the three constants A, g, and T by the

relation

B = {M(N-l) T ~ N(M~1) AMg}/(N—M). (113)

The constants A, g, 2nd M are estimated from thé data. For
this purpose we require (1) an estimate of the veriance among ele-
nents in the corplete population, so as to obtain T (ii) an esti-
nate of the variance between elements within large units for at
least two values of M, so as to obtain A and g, If the relatlon
holds, we cen then predict the value of B, and hence the sampling
variance with the large unit, for anv velue of M,

Hendricks (30) has pointed out that the complete population
might be regrrded as a single large ssmpling unit containing N

elenents. If formula (113) holds, we may therefore put T = AN®,
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Substitution in (113) gives
B = AMN {(N-l)ng"l - (M-l)Mg"f} ] (v-) . (114)

The formula now depends on only two constants, A and g. It can
thereforc be estimated from the variance among elements in the
population, plus the vrriance within the large unit for ong value
of M. It may happen, however, that while (112) holds for small
volues of M, it falls to hold for the very large value M = N, In
this cvent the more generel formula (113) for B should be used.
For aoplications of (114) to sgricultural data, see Hendricks (30)
and McVay (33).

7.5 4 Cogt Functici: In connection with surveys where the
elenents are farms, and the larger units, or clusters, are groups
of necighboring farms, Jessen (12) has developed a function that
expresscs the cost of taking the sample in terms of M. The dis-
cussion below presents a simplified form of this cost function.

We suppose that the sample contains p large units, each with

M elements. Two components of cost are distinguished. The compon~
ent can consists of costs that very directly with the total number
of elements (farms): thus 5 contains the cost of an interview and
the cost of travel from far;Vto farm within the large unit,

The second compoment, e, J 1, mersures the cost of travel
between the areas. By tests on a2 map it was found that this cost,

for a fixed population, veries with the sguare root of the number

of sampling units. Total cost is therefore of the form

¢ (¥,n) = cMn + cz./_'n : (115)
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The best choice of M and n is that which minimizes the cost
for a spccified value of thé veriance of the estimate. If we are
estinating the mean per farm for some item, the variance, ignoring
f.p;c;, will be B/Mﬁ, since there are Mn farms in the sample and B
is the varience between the units on a single~farm basis. Simple
rondon sempling is assumed., Taking the more general form (113) for
B, we have
V(k,n) = -——E:;— = {(N-—l) T - N(M—l)AMg—l} /n(N-¥), (116).
Since N is assumed very large this reduces to
V(M,n) = {‘1‘ - (M-l)AMg”l} /n. | (117)
The 2lgebranic éolutiop is » 1little complex, though its abplica—
tion in a particular problem presents no greaf difficulty. We shall
consider one aspecf bf the solution that lesds to some interesting

conclusions. We hrve to minimize

C + AV
for o specified value of V. Since 0V/dn = ~V/n, the equations on

differcntistion with respect to n and M sre
Mo+ 1 -5 - a v/ (118)
cl —2— c2 n 2 4 n .

n = -A0V/aM . (119)

Dividing (119 by (118) so as to eliminate A, we find that

M o7 = . 1 (120)
v oM ¢

ZcIM/ n

Now if cqurtion (115) for the cost is solved »s a quedretic in /W ,

1 +

it will be found, after some manipulation, that
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0 _1_
2ey B/ {l . 4 CcM }+ 2

= -1
02 | cz
Sudstituting in (112) we find
o -1
_.M_ oV - 1+ 4 ClM T
v M = -1 (121)
°2

The important point about this equation is thet it does not
involve @, as may be verified from the form of V, equation (117).
It is »n equnrtion from which we cen solve directly for M. Further,
the left hand side does not involve any of the cost factors. The
right hrond side 1nv91ves M only in the combination 4 C cy M/c: .
Hence if the variance function is unchanged but the cost factors
vary, M will respond to these variations in such a way that the
quantity 4 C e, M/cg remains constent,

Now ¢y increrses if the length of interview increases, while
Cs decreascs if travel becomes cheaper, or if the feorms in a given
arcr become more dense, These facts lead to the conclusion that
the optimum size of sampling unit becomes smaller if (i) the length
of intorview increeses (1i) travel becomes cheaper (11i) the dlements
(farns) become more dense or (iv) the total amount of money used
(C) incrcases. The conclusions arc, of course, a consequence of
the typo of cost function that has been used and would requirc re-
exaniination for a differcent type of cost function.

7.6 Coses where the Lerge Units Vary in Size: This happons

in nuncrous surveys. A household, for example, contains diffcering
nunbers of individuals while an area of land, as uscd in farn sur-
veys, will contain differing numbers of farms. If several spccific

sizes of unit are belng compared, snd if the variance has been
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estinmated dircctly for each size, the methods of section 7.2 may be
apilicd without change. The construction of a varience function re-
quircs a nore elaborate analysis of variance to take account of var-
istions in the M's: See (12) and (29).

The best method of cstimeting a population total also requires
consideration. Suppose thet the 1 th sampling unit has Mi clements
and that the item total for the unit is Yy- The method considercd
thus far for estimating the population total 1s to calculate the
mean Her S.u., o yi/n, and multiply by the nuﬁber of s.u.'s in the
population. If vy 1s roughly pronortional to Mi' as will often
haporen, this estimate may be rather poor, since its variance will
decpend on the varistion iﬁ the Mi' An alternative is to calculate
the meen per gloment T yi/E ¥, and multiply by the number of
clemcnts in the populstion. This 1s frequently more accurate than
the estimate based on the menn per s.u. . The sampling varisnce
-of this type of estimate is not covered by the formulae given
previously in these notes, since both & y; and Z Mi will vary from
serple to semple, so that the estimate involves the retio of two
randon veristes. Sampling verisnces for ratio estimates are given
in Scction 9. |

7.7 Possidble Birg with Small Units: It sometimes is found

that snall units give blased estimates, the bias arising from un-
certointy about the boundsries of the unit, For exemple, Homeyer
and Bleck (31) found thet in sampling for the yileld of oats, units
2! x 2' gave yields about 8 percent higher then units 3' x 3'.
They exoress the opinion thet the results for the larger unit are
probably slso binsed upwards, beceuse somplers tend to place boun-
drry plents inside the unit when there is doubt. Sukhatme (32)

gives siniler comperisons in sampling for wheat and paddy.
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SUBSAMPLING
8.1 Suppose that the population is divided into N large sampling

units, and that each of these contains M smaller units, which we will
now call sub-units. If sub-units within the same unit give closely
simiiar results, it may seem a waste of time to enumerate all M sub-
units. Consequently, it is a common practice to enumerate only m of
the L sub-units in each unit., In the presentation of the initial
theory, these m will be assumed chosen at random from the M. This tech-
nique is called subsampling, since the sampling unit is not completely:
enunmerated, but is itself sampled. For instance, in estimating the
production of wheat in an area by sampling the standing crop when it
is ripe, the field might be the sampling unit. It would not be feasible
for a travelling crew 4o cut and thresh the whole of every wheat field
that come into the sample. Instead, small areas of wheat (sub-units)
are cut from each fleld. Studies have indicated that it is not econom-
ical to cut more than a emall part of each field, so that in this case
m/l is likely to be quite small. Similarly, in sampling the inhsbi-
tants of a town, a block may be the sampling unit, and a few persons
or households selected from each block that comes into the sample.
Zote. From another point of view, subsampling is the same thing
as incomplete.stratification, For we might regard the sub-unit as
the samrling unit, and the unit as the stratum. The sampling tech-
nique is then such that only certain of the strata are sampled.

8.2 Zlementary theorv: We assume that.the observation i3 from

the j th sub-unit of the 1 th unit is of the form

yij = f’\+ bi + wij (121)

where r\ represents the population mean, bi varies from unit to unit

with nean zero and varisnce o% , and wij varies from sub-unit to

sub-unit with mean zero and variance 03 . All values of bi ’ wij
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are assumed mutually independent, and the number N of units in the
population is assumed infinite, The units are chosen at random from
the population, and the sub-units at random from the units.

. From (121) it follows that the sample mean per sub-unit when m

sub-units are taken from each of 5 units is

_ (122) -
Hence, 02 oz
V() = EF_ meLa nb ¢ (123)

Note that an 1ncrease:1n g.diminishes only the contribution from the
variance within units! an increase in n diminishes both components of
the voriance. For an estimate of the population total, we use MMy ;
the variance is then multiplied by (NM)zf

8.3 Egtimation of the varisnce? When a sample of this type has
been taken, we may compute the following analysis of variance, on a
sub-vunit basis.

TABLE 16,

ANALYSIS OF VARIANCE WITH SUBSAMPLING

a.f, Mean square Zstimate of
2

Within units between n(m-1) W= Z(Yij—§i )2 [n(m-1) 05
sub-units :

- = s e W e & s

) - - 2
‘Between sampling units (n-1) B =mZ(y rynm) /(n-1) o +tm oi

where ii. is the mean of the m observations from the i th unit. It
may be shown by algebra that the expected values of B and W are as
shown in the right hand column of the Table,

Consequently from (123), an unbiased estimate of the variance of

the semyle mean ¥,, is simply B/am. The value of W is not required.
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8.4 Prediction of the veriance for other subsampling rates:
Fron the analysis of variance in Table 16, we can also predict the
variznce of the sample mean for sampling and subsampling rates differ-
ent from those actually used. This information may be useful in the
planning of future samples on the same type of population.

Supnose that in the initial sample there were m sub-units sarpled per
unit and pn units. We wish to estimate the variance of the sample mean

under the supposition that these numbers were chenged to m' and n!

respectively., By (123), this variance is

2 2
oy S,
v(yhlml) = + (124)
a! n'm'

From Table 16, unbiased estimates of 02 and 02 are
2 2
= -W . = .
5y BW)/m ; 8, v

Hence the estimated variance of the sample mean is

2
8
b, . 31 | B 4w (i - (125)
n! a'm! n' m m! m
Exomplet King and Jebe (24) report the'following analysis of

variance in sempling wheat fields in North Dakota, 1938, Two small

semples were taken from each field, and the fields were stratified by

! units.
1

districts.
TABLE 17.
AVALYSIS OF VARIANCE OF WHEAT YIELDS (BUSHEL PxR ACRE) *
! d.f. Mean squares '
' Between fields within districts 217 180 !
! Within fields between subsampling 222 38 :
'

* Since the analysis presented by King and Jebe refers to a field

mean, the mean squares have been multiplied by 2 to place it on a

sub-unit basis.
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“he fields were not chosen at random, but by following routes
designed s0 as to give good coverage of the area. Consequently, the
mean sguare between fields may be a slight overestimate of the figure
that would be obtained from a rsndom sample of fields. For purposes
of illustration, it will be assumed that the technigue may be zpplied
here. Xurther, effects of variation in field size are ignored.

e will consider how the variance of the sample mean is affected
by (i) doubling the number of fields, with 2 subsamples per field;
(i1) keening the number of fields unchanged, but teking 4 subsamples
per field; (111) keeping the number of fields unchanged, but completely
harvesting the fields.

If there are n fields in the original sample, the variance of
the somple mean is 180/2n, or 90/n. By substitution in (125) the
reader may verify that the corresponding varisnces for cases (i) =nd
(ii) are

-85 . y = 805
V= vy = B0

To solve case (1i1), we have to assume that complete harvesting would
be equivalent to taking all possible sub-units out of every field in
the sample. Since the size of the sub-unit was very small compared
to the size of a field, this implies that m' = ® . The formula
gives

v 71

=

‘s .
iii n

The results illustrate the point that when there is an substantial
variance between units, the variance of the sample mean cannot be
decrcased rapidly by increasing the subsampling rate: it 1s necessary

to sample more units.

8.5. Application to field experimentg: This type of theory may

bc applied to fleld experiments in cases where plot yields are
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