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PEEFACE

These notes fO~j the b~sis of n one-q~.rter COurse of lectures
on s~npling techniques delivered at North Onrolina State OOllege to
grAduato students who are specializing in st~tistics. The main ob-
ject of the loctures is to present the principal techniques in cur-
rent use. with the theory from which they are derived. ior re~ding
the notes, fa.cility in elenentary algebra findn.good knowl~e of

d".,

elonento.ry sk.t1stic::llthoory are req\1ired: calculus is used only
to n slight, oxtent. Occasionp.lly. proofs are given in a condensed
forn, since it ib desired to concentr~te attenticn on results rather
thc~ on doteils of proof..

In tho prepEl.rationof the notes, r,enerous assistnnce MS been
given by E, H. Jebe and-A.t. F1nkner, Resident OOliaborators, Agri-
culturnl Estiontos, :Bureau of Agricultural Econot1ics. Mr. Jebe pre-
pared the first draft of tloQt of Chapters 1 to 5, while Mr. Finkner
prepnred tr~t of Chapter 9: both ~~ve taken major responsibility in
supervising the later stages ot mioeogrnpbing. My best thanks are
due to Mrs. Jossie M. Gr~ for the typing, nnd to Miss Mary Ruth
Renvis who did the mimeographing.
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INT1\ODUCTION

1.1 Within recent years sampling has been increasingly used for
obtaining information. The principal advantages claimed for the sampl-
ing method at'e:

(1) Reduced cost. If data are secured from only a small fraction
of the population, expenditures will be smaller than if a complete
count were attempted.

(2) Greater speed. For the same reason, the data can be collect-
ed and summariied more quickly with a sample than with.a complete count.
Thie may be a vital consideration when the informat ion is urgently
neeClec1.

(3) Greater accuracy. A sample mq actually give more accurate
results than the kin~ of complete count that it is feasible to take •. .. . ,

Since a much smaller field force is needed for a sample, it m&J be pos-
sible to engage personnel of higher Q.uality and to give them more thoro-

ough training. ,
1.2, Genera~ ~rocedure in sam~lin£. In order to indicate the scope

of this course, it is convenient to indicate briefly the stepe that are

usually involved in the planning and execution of a aample survey. These
steps will be grouped rather arbitrarily under eight headings •.

(1) Definition of the population to be sampled. This may present
no problem, as for instance when sampling a given batch of 1,000 elec-
tric light bulbs in order to estimate the average length of life of a
bulb. On the other hand, in eampling a population of farms, rules must
be set up to define what constitutes a farm, and borderline cases will
arise. It is important that these rules be usable in practice: that is,
the enumerator should be able to decide without much hesitation whether
a doubtful case belongs to the population or not. Further, the population

sampled should coincide with the population about which information is
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wanted. Sometimes this will not be feasible. For example, in taking
a sample of voter's opinion~ in order to predict the result of an elec-
tion, the population that it is desired to sample is the population of
voter's o~inions when they go to the polls. Since the sample must be
taken several d~s before election d~, all that can be sampled is the
population of opinions of intending voters some daTs before election.
Doth their o?1nions and their intention to vote may change.

(2) Determination of the data to be collected. The data needed
depend on the purpose of the inquiry. It is well to have this purpose
clearly defined, and to verify that all the data"are relevant to the
purpose and that no essential data are omitted. There is frequently
a tendency to attempt to collect too much data, some of which is never

subsequently examined. Sometimes data that would be desirable are
impossible to collect, at least in an accurate form. For instance,
people mq be unable to recall accurately their opinions or the de-
tails of their business transactions at some previous time.

The construction of the schedule or questionnaire on which the
data are to be recorded often presents difficult problems, which have
been the subject of specialized study in recent years. A few of the
devices that have been found useful are given below.

(i) The questionnaire should be reviewed by disinterested persons.
(ii) The auestionnaire should be tested in the field before the

survey itself begins. This pre-test should reveal questions
that are ambiguous or not clearly worded, questions that the
respondent finds difficult to answer, and the types of query
that the respondent may make about the meaning of certain
questions.
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(iii) In questions of opinion, every attempt should be made to
ensure th8.tthe wording is'noutre.l , : i.e., that it does
not influence the respondent to give one kind of answer
rather than another. If it is not clear which of two wordings

is preferable, each may be tried in half the schedules.
(iv) Sometimes the questions asked are of little or no interest to

the respondent. In such cases it may help to insert addition-
al questions that will evoke the respondent's interest, even

;"'\though they are rather irrelevant to the main prupose of the
sample.

(3) Choice of saJDpling-unit. The sampling units are the elements
into which the population is divided. Sometimes the appropriate unitls
ObviOUS, as in the case of the sample of light bulbs, where the unit would
be a single bulb. In sampling a town population, however, the unit might
be an individual, a household or a city block. In sampling a field of
corn, the unit might be a single plant, a sing~e hill,a group of four
hills, or perr~ps some lPrger group of hills. The best size of unit is
that which will give the desired degree 01 accuracy in the estimates at
the s~~llest cOst. If a fixed percentage of the population is to be
sampled, it usually is found that sampling costs are lower when the unit
is large. On the other hand, the accuracy obtained through the use of
larger units tends to be lower.

(4) Method of selecting the sample. There is now quite a variety
of procedures by which the sample may be selected. In the choice of a
method, the general principle is the same as that used in the choice of
Gize of unit: the method selected should provide the desired degree of
accuracy at minimum cost. The Question of the size of sample also arises
here. As will be seen later, the size needed can be estimated, at least
roughly, when the method of sampling has been selected and its sampling
properties have been studied.
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(5) Method of collecting tha data: After the members of the

sample have been chosen there arises the question of how to obtain the
information from them. This may be done by mail, by telephone, tele-
graph or by. direct enumeration. i.e~ an interviewer seeking out the
sample members and eliciting the information. A combination of indirect.
say mail, and direct enumeration may be employed. Efficient combination
then must be considered.

(6) Organization of the field work. Here many problem3 of business
administration are involved which lie outside the field of statistics.
It cannot be too strongly emph@.sized, however, that the success of any
survey depends on competent field work. The personnel must be qualified
to cope with the task of enumeration. and must receive training in the
purpose of the survey and in the methods to be employed. Supervision of
the field work and checks on its quality are essential.

(7) Summary and analysis of the data. The first step ~s to 'edit'
the SChedules, in the hope of amending recording errors, or at least of
deleting data that are obviously erroneous. Difficult questions of
judge~n1entmay be met. Thereafter the tabulations leading to the esti-
mates are ,erformed. Different methods of estimation may be available
on tho same data, and a superior method sometimes results in a substan-
tial increase in accuracy.

(8) Information gained for future surveys. The best method of
sampling depends on the type of variation that exists among the units
in the population. In general the only sources of 'information about

'this variation are the results either of samples or of complete cen-
suses. Consequently any sample is potentially a v~luable guide to the
conduct of future s~mpling investigations. Given the results of a
sample, it is often possible to investigate the accuracy that would
have been obtained from alternative methods of sampling that ware

mailto:emph@.sized,
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considered but not used. The cost of such alternatives may be estimated

from cost data. Thus each sample of a given type of population should

lead to more efficient sampfing in the future.

1.3 SCoPe of the course. The theory of sample surveys has been

mainly concerned with items (3) choice of sampling unit, (4) method of

selecting the sample, (7) summary and analysis of the data, and (8) infor-

mation gained for future surveys~ This course will likewise deal mainly

with these topics. It should be reali~ed) however, that i.he other items---

definition of the population. determination of the necessary data and

method of cOllecting it. and organization of the field work---are e~ually

important: poor field work, for instance, may ruin an otherwise admirable

survey.
The various topics will be discussed in the order that seems easiest

for er)ository purposes, rather than in the order in which they are en-

countered in practice when a sample'survey is undertaken.

1.4 General ~rinci~le. In deciding whether to choose one sampling

procedure rather than another, the following principle, which has already

been mentioned. is being increasingly used. The principle is to select

the method that gives the desired accuracy at the lowest cost; or alter-

natively the maximum accuracy at a given cost. In the practical use of

this principle, we must be able to predict both the accuraCY and the cost

of each yrocedure before we can decide which to select. With samples of

the sizes that are common in practice, there is usually good reason to

believe that the sample estimates will be appro2imately normally dis-

tributed. Consequently, the spmp11ne v~r1ance of the estimate is used

to provide the mop..sureof its accuracy. A considerable part of the work

in this course will consist of the calculation of formulas for the sampl-

ing variances of estimates obtained by various procedures. These
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formulas usually contain one or more unknown paremeters that describe

properties of the population. In order .to make a prediction of the

s~~pling variance, values must be inserted for the unknown parameters.

It is at this point that knowledge obtained from previous sampling of

the same or similar populations is very helpful.

The prediction of probable costs may also require data obtained

from previous surveys, Some rather simple types of cost function which

have been used will be discussed late~, though knowledge of cost func-

tions is still rather scanty.

1.5 Errors of samnle surveY~. In connection with this general

prinelple, various writers (Mahalanobls, Rotelling, Deming and Stephan)

have discussed sources of error that will affect the accuracy of a

semple. Among these sources, three may be indicate! here:

(1) Sampling variations, that is, errors arising from the fact

that only a portion of the population has been examined.

(ii) Recording mistakes. These comprize errors made in recording

the data on the schedule. They might arise from either the

enumerator or the respondent, and might be the result of

mistakes, biases or dishonesty.

(iil) Fhysical fluctuations. There may be an inherent indefinite-

ness about the quantity that is being measured, e.g., the total

production of a crop will vary according to the moisture con-

tent, which will depend on the weather. Similarly, many

quantities change with time, such as voter's intentions or

the population of a city, and when a survey extends over

several weeks it is not clear exactly what has been measured.

This classification leads to some interesting conclusions. First, while

a complete count avoids error (i), it is just as subject to errors
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(ii) and (iii) ~s a sample. In fact, it may be more subject to (ii)

than a sample if a lower quality of enumerator must be used. Secondly,

the size' of the physical fluctuations imposes a limit to the accuracy

which it is worth-while trying to achieve by reducing sampling fluctua-

tions and recording mistakes. Thirdly, if recording errors are large

they may contribute much more than the sampling variations to the total

error. If this is the situation, a marked increase in accuracy can be

secured only by reducing the recording errors, and not by taking a larger

sample in order to diminish still further the ~ampling variations.
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:BASI C THEORY

2.1 Sample surveys deal with samples drawn from populations that
contain n. finite number N .ofunih. The values of the item that is
being measured are denoted by Yl' Y2' • •• YN• In general, no partic-
ular form of frequency distribution is assumed for these values. In
practical applications it is, however, frequently taken for granted
that the means ot samples of size n are approximately normally dis-
tributed. This assumption implies tha' the original values are not
too far removed from a normal distribution.

2.2 For the population these relations are defined;

The Mean: y =
p

The Variance: ri =

Yl + Y2 + • • • • YN
N

(
_2

t yi - yp)
N-l

I

Note: Some writers use N as a divisor when defining the
variance as is usually done in the mathematical
theory of finite populations. The definition given
above makes it easier to use the concepts of the
analysis of variance.

SinroleRandom Samplin£:
•

First it is to be noted that a
&ample of n distinct elements can be chosen in NOn w~ys from the
population. In factorial notation this is expressed as Nt I (N-n)l nl
wa~,rs•

Simple random sampling is defined as: A method of selecting n
items out of N sO that it gives everyone of the C 'groups an equal

, .N n
chance of being chosen. As an illustration consider an example:
N = 5, a population of 5 elements and n = 3, samples of 3 items to be
dra'.rmfrom the population. There are 10 possible samples of 3 items.
They are:

Ai30 4BD !.BE ACD ADE
ACE :SOD :SCE BDE ODE
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Note: If the elements are drawn, one by one, without replace-
ment, and if at any stage, or any draw, all undrawn
elements have an equal chance of selection, this pro-
cess gives a simple random sample. Applied to our
example the process gives an equal chance for obtain-
ing anyone of ,the 10 possible samples listed.

2.4 Let y denote the mean of a eimple random sample of size n.
n

Consider E ( ) as the average over all the NOn possible samples •
.Observe that the operator E is used here as in the discrete case in

formal probability theory, e.g. to the expectation of the throw of
a single die.

Theor'em 1a: J(Yn> 1;1 Yp

For E(yn> = ....LnE (y + Y ••• + Y >1 2 n
Since every unit appears in an equal number of samples,

I (y + ••• + Y ). must be some multiple of (y +.••• y >. Further,
1 n ,.. 1 1f

the multipiler must be n/N, since the f~rst expression contains n terms
and the second N terms.

Hence:
= -Ln

2.5 Theorem Ib:
E '(y2) = -1- N-n

n Nn N-l

-y •
p

This theorem is proved in order that it may be applied in the
proof of later theorems.

Proof:
•••

=
2

• • Yn + 2?

:By symmetry,
E (y~ •• ~ + y:>:; +- (y~ ••• + y;)
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( ) n(n-l)and E "11 "12 • • • + Yn_l "In = N(N-l)

Hence,
E (-2) = -1-- ~ v2

i
+ 2(n-l}"I ~,,- ••••••• ~- ("I "I + ••• y y ) •n nN 1 nN(N-l) 1 2 N-1 N

:But 2("11 "12 + ••• y y ) = Y ("I
N-l N 1 2 ••• + Y ) + y (Y + "I • • +y )

N 2 1 3 N

+ Y (1' + "I •• i-Y. )
N 1 2 N-1

= "I (Ny -y ) + "I (Ny - 1 ) + •••
1 P 1 2 P 2

22 N 2= N y.:.. - t "I •

P 1 1

••

+ "IN (Nyp - YN),

1N) - Y~ - ~ • • • - "Ii

Introducing this last reduction in I (12),we obtainn

n-ll 2 Hen-l)N-1) t "11 + n(B-I)

\ t :l + H(n-I) 12
i n(N-I) p

2.6 Theorem 2. Variance of the mean of a random sample.

(
__ )2

E y - y =n p
N-n

N
(5)

Proof: Expand the above, obtaining
(
-2) 2

E "In - 2E Y "I + "I
n p p

= E (~) - y~ ' by Theorem 1a.
Substitution from Theorem 1b gives

1 t N-n j N
2 +{ N(n-l)

-l}
_2

--n.tT N-1 r.
"Ii n(N-l) Yp1

1 N 2 N-n -2= N-n t "I -
n(B-1) YpWI N-l 1 i
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:s ..J..... N-n
{ 1

(t 2 _ II -2) }
n N N-l Yi Yp

= N-n 02
N n

The quantity N-n is usually called the finite ~6~ulation correctio~.
N

Notez If -A- < .05 (1.e. less than ~ sampled). o~N . ~
depends primarily on n, and not on ..JL. For

2 Ninstance, if 0 is the same in the two cases, a
sample of 500 out of a population of size 200,000
will have a mean almost as accurate as that of a
sample of 500 out of a population of size lO,~OO.,

2.7 Theorem 3. Estimation ·of a2 from t~e tample data.
- )2I: (yi - Yn.,

s'" = ,- 2,is an unbiased estimate of a • (6)
n - 1

Proof:

::: 1
n-l t- N 2

-IL t y -N 1 i
N-nN(N-l) from ~heorem

lb. _

Combining the first two terms in brackets, this reduces to

1 tl!fn-11 N 2 N(n-l) -2J= t y - Ypn-l N N-l 1 i N-l
::: 02

Hence, the estimated standard error of Yn is

s =Yn
J(N-n)

.jN
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CO~7IDENCE LIMITS AND ESTIMATION OF SAMPLE SIZE

(SIMPLE RANDOM SAl>lPLING)

3.1 Confidence limits: If n is reasonably large and -n- is
N

not too large. Yn will be assumed approximately ncrmally distributed about

Yp• Thus, approximate confidence limits may be constructed in the

ordinary way by writing

.....L
~-

(8)

vhor~ t(~.n-l) is the value of t corresponding to a significance

level ~, for (n-l) degrees of freedom.

3.2 Size of sam~le need~d. Before the sample is taken. it is

useful to be able to obtain some idea of the size of sample that vill

be needed in order to attain a desired standard of accuracy. The

accuracy required is usually defined by specifying a probability level

~ (e.g., .05, .10, .20) and a margin of error ~ allowable in the

sample mean. That is, we want

P {I Yn - Yp' ~;) = CL

If this equation hOlds, the probability that the sample mean lies

within a distance d of the population mean is (l~), and can be

made as close to certainty as we like by making CL sufficiently small.

The equation simply states that the confidence interval is of width

2d. Two Cases must be considered.

3.3 Case 1. The value of n cannot be predicted without some

knowledge of the standard error a in the population. In Case 1, a

is estimated from previous sampling of a similar population, or

simply by intelligent guesswork. Since the estimated a is likely

to be itself in error, we cannot expect more than a rough estimate

of n. If a were to be correct, the value of d would be given by
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d = IYn - Yp I= t ("'~) ) N;n • (9)

where t(~,~) is the normal deviate corresponding to the significance

level~. Solving for n, we have

or n =
NaG tG(a..CllI)/dG

N + aG tG~i,CllI)
d

= (10)

•

-,

If N is very large, the second term in the denominator can be

neglected~ and we obtain

The procedure is as follows: First calculate nO. If no/N is an

appreciable fraction (say greater than .05), take

n= no
1 + nO

N

The value of A will then be the correct solution of equation (10).

When the sample is actually taken. the confidence interval will

be calculated by means of the t distribution rather than of the nor-

mal distribution: that is. by equation (e) rather than by (9). A

further refinement that is sometimes introduced is to adjust n sO aa

to take account of the fact that the t value fop (n-l) degrees of

freedom. which appears in (e) I is larger than the corresponding nor-

mal deviate which appears in (9). For instance. if n turned out to

be 16. it may be verified that n would have to be increased to le

for this reason, The refinement, however, is hardly worth-while

unless the initial estimate of a is good and A is less than GO.
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3.4 Ex:un'Dle: An example illustrating application of the formula

for determining sample size: The data were obtained from a planting
of silver m~ple seedlings in a bed 430' long. The sampling unit was
a one foot strip across the bed. By complete enumeration of the bed,
the following population values were obtained for the number of seed-
lings per unit.

Assuming simple random sampling, how many sampling units must be enum-
erated to estimate yp within l~ with a confidence probability of .951
Applying equation (9). we obtain

The result shows that about 20'1> of a whole bed has to be counted to
obtain the accuracy desired.

3.5 Case II. The methods given for Case I do not guarantee that
the confidence interval will be of the required width, for the initial
estimate of a may turn out to be wrong, and even if a is correct, the
~ that is found when the sample is taken will differ from a. All that
the procedure attempts to do is to ensure that the interval will be
about the desired length. If an exact interval is.wanted, the infor-
matlon about a must be obtained from the population that is being sampled.
A method that guarantees a more exact confidence interval is due to
Charles Stein ("A Two Sample Test •••• n Annals of Math. Stat., Vol.
16, pp. 243-258, 1945). Stein's approach considers taking the samplo
in two parts.
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The first part of the sample, of size nI, say. supplies an esti-
mate sl of a, calculated in the usual way, and also a preliminary
estimate of the mean. When the first part has been taken, Stein
shows h~l to calculate the number of additional observations needed
in order to have a specified confidence interval. Note that both
parts must be samples from the population about which information is
desired. Thus, if the population changes with time, the time interval
between the first and second parts must be sufficiently small that no
appreciable change will have occurred".

Since Stein's method Vas developed for infinite populationst the
case where n/N is negligible will be considered first. When the first
sample has been obtained, a confidence interval for yp can be calculated.
The half-width of this interval is (by equation (a), with n/N negligible)

t{a.,~ - 1)s/Jiil •

If this quantity is less than or equal to S, the desired half-width, the
sample is already sufficiently large. If the quantity exceeds d, take
additional observations so that the total size of sample n is at least
as great as

s2t2(a..nl _ 1)/d2

Then, if y is the mean of the ~ samplen

P { I Yn - Yp, f ~ d ; ~ a. • (14)

Sketch of ~roof. The proof assumes that the observations,

Yl' Yz' • • • Yn' are normally distributed about Yp• Throughout the
proof, d,a. and n1 are assumed to be fixed quantities. The total sample
size n is not fixed, but is a random variato. since its value depends
on tne value of A that turns up in the first sample. Nevertheless, for
fixed ~, n is fixed, and the quantity
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,jn <Yn - Yp>

is normally distributed with mean zero and variance 02• Hence, this

quantity follows the normal distribution whether 1 is fixed or not.

Moreovor, tho distribution is independent of that of s. Consequently,

In (Yn - Yp>/S
follows the t distribution with (nl-l) d.f •• ~y definition of t(~,~-I),

it fo11O\'/s that
(15)

This is the key result in the proof~ Further, by the way in which the

value of A was calculated, we always have
(16)

sO that

t(y - y. > /d In p

Hence, from (15)

p{ t(~n-Yp)/dl>y~"
i.e. p{ f ~n- Ypl ~ ~~" ·

The average value of n that 1s required in a given situation depends

on the choice of n1• Exact information about the optimum value of nl i8

not yet available, the optimum being that value which leads to the

smR.lle!';taverage n. It appears, however, that the ,optimum nl is such

that R. second part will usually be necessary. In other words, if it

is convenient to take the sample in two parts, nl should be chosen as

somc\'lhat less than the size tha.t seems to be needed. On the other hand,

if it is troublesome to take the sample in two parts, nl may be chosen

at about the expected size, or perhaps a little larger if a few unnecessary



•

- 17 -
observations do not matter.

Example. Suppose that d = 10, ~ .05. From previous information,
a is guessed as about 50 (though this guess may be seriously in error).
With this v~1ue of 0, it appears from (13) that a sample of about

(2,500) (1.96)2/100, or 96.
will be needed. Assuming no difficulty in taking the sample in two
parts, nl might be chosen as 50.

In this Case t(.05,49) = 2.01. s2 is found to be 1,938. We find

that
ts/~ = (2.01) (44.02)/ 7.0711 = 12.51,

SO that a sample of 50 gives a confidence interval of half-width 12.51,
which is larger than desired. Finally, n is chosen so that

n;:;' l's2/d2:2 (4.040) .(1,938)/100= 78.3
That is, 29 additional observations are taken to make the total n = 79.
If the finite populfltion correction must be applied, the only change is
to choose n so that it is at least as large as

t2 s2
d~

+ t2s2
1 + • ----

d2

,
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SAlfrLING FROM IIBINOMUL TYPE" POPULATIONS

4.1 ~uppose that the'data to ~e taken divide the sample into two
classes or groups, say A and A' (those not in A). The result of the
sampling may be expressed as a percentage. Examples are a pre-election
poll to determine the proportion of voters favoring a certain candidate,
or a survey to measure the proportion of housewives listening to a radio
program. This type of sampling resembles ordinary binomial sampling
except that the individuals measured come from a finite population.

The results already obtained can be applied if the data are coded
in the following manner: For the members of the sample Yl' Y2 • • • Yn'
or population, Yl' Y2 ••• YN' mark 1 for each Y in A and 0 for each y

not in A. Then the sample population proportion,
Number in Sample in A

n.' y =n

population proportion,
:::p ,and the

n

y =p
Number in PQPUlation in A

N
::: p

4.2 Theorem 4. The definition of the "Binomial Type" population
variance:

2
a = N

N-l p q where q :::l-p.
Proof: 3y definition,

2 1 (2 _2)
a c N-l ~ Yi - N yp (1 ::: 1,2 ••• N).

:: 1
N-l N P'lN-l . from the coding

and definition of p given in (4.1).
4.3 Theorem 5. Variance of the s~mple proportion from a simple

random sample is N-n
IT-l

p q

n (18)
:roof:

This follows at once from the previous results, (Sec. 2.6).
T:-.rorem2 grwe

V(y )'::: N-n 0
2

n N n
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By substitution, using Theorem 4,

V(Yn) = N-n ....L . N
N n N-l

• N .•.n L.i-N-l •n

p q

4.4 Estimation of the varianc~ of the sam~le ~ro~ortion: Ey sub-

stitutlng the sample values, we obtain

v() N-nPn = (N-l)n

It is to be noted, however, that E(Pn ~) D

Therefore, ~ unbiased estimate of

N(n-l)
n(N-l)

pq

v() N-n
Pn = (N-l)n n(N.-l)

N(n-l)
(20)

~or any reasonable size n the correction for bias is negligible and

either (19) or (20) may be used.

4.5 Confidence limits for the s~nle ~ronortion: If normal theory.. ,

can be applied the confidence limits are

J p q

,In ••

This relation is still not in usable notation since p and q are unknown.

Substitution of estimated values from the sample givea

of freed.om.

where t(~) is taken with m degrees
(22)

lihen p is near .5 the normal approximation gives satisfactory

results. With increasing sample size the normal theory may be applied

even though the sample proportion deviates considerably from .5. The

relation is indicated in the fOllowing abbreviated table:



Observed Proportion
Pn

.4 or .6

.3 or .7

.2 or .8

.1 or .9
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Sample size for normal
theory to apply

50
100
400

1,000

4.6 Confidence limits when Normal Theory does not annly: Several
procedures are available in this situation. One procedure is to construct
charts for determining the confidence limits. These charts are based on
a summat ion of the terms in the binomial expansion with varying p and n
by use of the Incomplete Beta function. A good set of charts is given
in Simon's "An Engineer's Manual of Sta.tistice.lMethodsu• Other sources
of charts are Clopper and Pearson and the Statistical Research Group
(see references). Tables may also be prepared in place of charts. A
useful table is given in Snedecor, pp. 4-5 (adapted from Clopper and
Pearson) •

A direct approach, which appears to be a more useful procedure, has
been suggested by Ivi. S. Bartlett. Bartlett considers the norma.l theory
confidence limit equation (21) of (Sec. 4.5) and proceeds to solve it
for p. Ignoring the finite population correction the quadratic solution
for p can be expressed as

Pn + k ± J 1 + 2Pn qn Ik
p =

1 + 2k
2where k = t (~)/2n

and ~ = 1 - Pn •
As an illustration of the results obtained by the various methods,

let us consider the following semple results: Four hundred individuals
were asked a given question to which "yes" or IInoll answers were recorded.
Seventy persons B.l'1sweredlIyes". so with n = 400. P = 70/400 = .175.n
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Method 9~ Confidence Limits
Lower Upper

Standard "Normal"
Bartlett "Normal"
Simon Chart
Snedecor Table (by interpolation)

.126

.131

.130

.121

.224

.229

.228

.237

In this table the Simon Chart result probably is the "best- answer.
The standard "normal" procedure is to be criticized tor p1a.cin~ the
limits symmetrically about the observed proportion p. The advantagen
of the Bartlett "Normal" method is that it gives an improved answer
without the use of charts or tables. On the other hand, the Snedecor
Table provides a fair approximation without much calculation.

4.7 Estima.tion of eam'Dle,Size required: Considering that d is
one-half the width of the confidence interval. as in (Sec. 3.2), and
that normal theory can be applied, a solution may be obtained for'n,
the required sample size, for a specified accuracy when sampling the

n =

":Binomial Type" population. The solution may be
2 2

t Pn em/d

1- +{l-

expressed as

When the finite population correction can be ignored the solution becomes
2 2simply n ~ t Pn ~/d. When p is near 0 or 1. the use of the normal

approximation will require a big sample. A study of the charts or
tables (refer Sec. 4.6) will give a good approximation to the sample
size required when normal theory does not apply.

4.8 Extension to more than 2 classes in the PO'DUlation: There are
a number of sampling situations in which the population divides itself
into more than 2 classes. We are then confronted with a "Multinomial
Type" estimation prOblem. As an example, suppose a survey has yielded
these results in answer to a given question:



Reply:

Number giving
the reply:

Yes
- 22 -

Class
No Don't know No answer

c
4

Then ri = c + c + c + C ,the sums of the numbers in the classes.
1 2 3 4

Other definite groupings may be envisaged. Ratios or percentages are

then computed from such data. At this stage. 2 cases may be disting-

ui shed.

4.9 Case I. We calculate

Pn = Number in any on~ class orn

P = Number 1n a combination of classes •n n

From the above illustration. we might take the number "Yes" or combine

the "Yea" and "No". Then, p = c In Or p = (cl + c )In. The theory
n 1 n 2

as already presented applies to this case. That is,

v(p ) =
n

N~n
(N-l) n p q

4.10 Case II. Suppose we take

=

Number in one or more classes in the sam~le
n1

Number in one or more' classes in the sam~le
n - (number in certain classes omitted).

Now the denominator does not include ~ll the classes, e.g, we might

omit "no answer" and "don't know" in (Sec. 4.8) and calculate

Since the denominator is not fixed. the variance appears at first

to be more complicated. The situation m~y be studied in the following

manner:
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Let NI be the populntion number in the clnsses t~~t nre being

considered ~d nl the corresponding spmple number. We will hP.ve
1~1 < N . nl :;f. n •

Then it m~y be shown that in r~ndom s~mples in which both nl ~nd n

Rre fixed, p 1 follows the usual binomiRl distribution about then

corresponding p.

Whl".tis ~""J?peningcfln be indicAted by nppep.ling to l'n expmple.

Suppose a popul~tion consists of the 5 elements ABC D E, where D

and E ~re of no interest. Then, NI = 3 with N = 5. Sp~ple8 of 3 are

tpken. The possible spmples mp~ be grouped,according to the value of'

nl• ADE, BDE, 1'.!ld CDE give n' = '1• .A:9D, ABE, ACD, ACE, BCD, Md BCE

yield nl = 2. ABC givesn' = 3. By fl.verngingover the ten samples, or

over Rny group ,,,1thfixed n I, it is e~.sy to see that fl.nunbit'l.sedestimate

of say A/(A + ~ + C) , will be obtAined.

Hence,

where ~ = Numbers in the classes in the population corresponding to

the cl~.sses in the st'mple used in forming the numerAtor for cp.lculating

Pn I' Further, for the v8.ri~nce, we hl'.ve

N'-nl

N'-1 p q/nl

With these results ,,,eCf!n now p,pply pll the previous developements of

this chapter. llhen normnl theory is applied the 'confidence 11mi ts

become
~

nl
(27)

Now, we note two points:

1) While N is known, NI in general is not known. ~uite often it

is cle~r that nl/N' is negligible. In that c~se, we use



- 24 -

p = p , ±t.kqj n' r.
n

2) If it seems El.dvisable to make n. finite population correction,

we mny assume that N'/N is estimated by nt/no Then we can use

p = p ± tj N-n
nl N-l •

Notice that nf still appears as the divisor for p q in (27b).
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STRATIF !ED RANDOM SAMPLING

5.1 Descrintion. This type of sampling follows the general procedure
of simple random sampling, but takes a preliminary step. The population of
size N is first divided into sub-populations of sizes Nl• N2 ••• ,Nk• These
~b-populations are called strata. ~xamples of such division are the use of
cow1ties within a state. or the separation of the labor force into factory,
farm, mine, professional, and clerical groups. When the strata have been
determined, a simple random sample 18 then taken from each stratum indepelld-
ently. The sample sizes within the strata are then nl, Da' ••• ~.

, .
Stratification is a common procedure in sampling. The reasons for its

general usage are
(1) If a heterogeneous population is divided into homogeneous str.ata,

the accuracy of the sample can be' increased, as will be shown
later.

(2) The administrative considerations relating to the survey&
(a) The location of the field offices of the agency conducting the

survey may require a division of the area by civil or political
units.

(b) Publication policy often requires that data be available for
sub-areas of the population.

(c) Action to be taken on the basis of the survq results may not
apply uniformly to the whole area.

5.2 Theory for Stratified Random Samnlin~. The notation is as follows.
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In (29), we note that the eouation assumes knowledge of the N. Thus, more

j

information is required fOr stratified sampling than for the simple case of

an undivided population.

Next. we state that E(y ) == y.. This result can be readily obtained byn p

application of Theorem la in each stratum.

Theorem 6: With Y defined as in (29).n

= population variance
within the j th stratum.

where

V(y ) ==n

2
o =j

1

~

k 2
j~l Nj (Nj-nj) oj/nj t

(Yij - Ypj)2

Nj - 1
Proof:

Then,

From the definitions of y. and y in (28) and (29) we obtain
p n

Yn - Yp = i E Nj (Ynj-Ypj) •

V(y
n

) = E (Y
n

_ Y
p

)2

Since a simple random sample has been taken within each stratum, previous

results can be applied.. By Theorem 2. we have

B(y - y / =nj pj

The sMll)le taken within a stra.tum is independent of the sample taken ••.Iithin

any other stratum, therefore,

Inserting the results of (32) and (33) in (31) we obtain
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~{hen nj/~j is negli~ible, (30) may be reduced to V(Yn) = ~2 ~ (~c~)/nj (34)

For
estime.te

estimating V(y ),n

vcY ) = .l ~N
n N2 j

2we do not know OJ'
(~j- nj) s~/nj

but we can use the unbiased
(35)

2 n ( _;)2 / ( )where s. = ~ y ~ n - 1 =
J 1=1 ij nJ j

(Refer Theorem 3).

estimated variance within the j th
stratum.

5.3 Ootlmum Allocation. We now examine the problem of allocating the

sample to the respective strata: that is, the choice of nl, n2 ••• ~.

From formula (30). the Variance V of the estimated mean Y is seen to be an

function of the nj• Sim:l.la.rlythe cost C of taking the sample will also be

a function of the nj" The principle which is used in selecting the nj is to

minimize V for fixed C~ Sometimes C is minimized for a specified V; it will

be foun& that this gives the same allocation as the minimizing of V for fixed

C.
5.4 Cost functions. The form of the cost function depends on the type

of survey. While investigation of co.st functions has been rather meager up

to the ~?resent time, the following type o~ function may serve as an example,

which might be a satisfactory approximation for some kinds of surveys.

C •• a +. L b
j

In + L c
j

n
j j j

This function has three constituents.

a = general overhead cost of the survey.

= travel cost within the j th stratum.

= costs that are proportional to the sample size ~,ithin
the j th str~.tum (this includes the cost of enumeration).

Note that travel costs have been assumed proportional to the s~uare root

of the size of sample. This approximation is based on work by Mahalanobis

( 11) and Jessen ( 12 ) ,
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No Generel discussion of the optimum allocation for this cost function

will be given. Two simple ca.ses will be considered. First, we suppose that

bj = 0 and cj = c, a constant. Then the cost function becomes

C = a + c (nl + n2 + •• + nk) = a + c 1:: nJ " (37)

Now 1:: nj = n, so we observe that C is proportional to n, the total sample

size, since the cOst per schedule is the same in all strata.

For the second case, we consider that the total cost is proportional to

I: cJ nj, i.e., cj' the cost per schedule, varies from stratum to
str~tum. Then we have

Cases I and II are presented below in Theorem 7 and a, respectively.

5.5 Theorem 7: (Refer J. Neyman, Journal of the Royal Statistical

Society, 97 (1939) 558-606). In stratified random sampling, V(i) is small-
n

est for a. fixed total size of sflmple if the sample is distributed with n
j

proportional to N
j

OJ"

Proof: Using the Lagrangian multiplier we have

k
V(y ) + ). C = ~ 1;

n ~ j=l
Nj 2Nj ( --- - 1) OJ + X (I:nj)n
j

Differentiating with respect to n
j

we obtain

+),-=0

~he solution for nj gives

N. OJ
nj = uJ..;-r: or nj is proportional to Nj OJ. :By summing

this result for nj in both members we can sim~lify the result since

t Nj OJ
NJr
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Sub~tituting for ~ we find the actual Talue of nj to be

This result, due to Neyman, is very useful whenever the cost of taking
the survey (apart from the fixed overhead) is proportional, (or almost so)
to the size of sample. Note that nj depends on the product of the size of
stratum and the standard deviation of the stratum. Other things being
equal, a lar~er sample is needed in a variable stratum. In practice the
values of OJ will not be kn~ when the sample ls planned. Usable estimates
of them can often be made either from general knowledge or previous exper-
lence with the population.

5.5 The Minimum Vari~ce. CaseI: Now let us re-write the variance
from (30) as

N2
2V(- ) = ..J.- 1; (..:..L _ N )Yn 2 n

j
j OJ

N

N2 ~ 2IS .....L 1; j j -~ (40)
N2 nj N

1; Nj OJ

In (40), we substitute the results of Theorem 7, 1.e., the value of nj as
given by (39). This yields for the minimum variance, Case I,

~2 1; Nj (j~ •

5.7 CorOllary 1 to Theorem 7: If the finite population correction
is negligible, the second term in the right member of (41)is small relative
to the first. This gives

V(y ) min •. =n
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Hence, the minimum standard error Can be expressed as

s(y ) min. = __1__
n .;n

5.8 Corollary 2 to Theorem ,. Pre~ortional Sam~lin£. If OJ = 0, a

constant, that is, ~'e have homogeneous variance for all the strata, then

the optimum allocation occurs when nj is proportional to Nj• For under this

condition (39) reduces to

n /N =
j j

n = n/N = a constant.tNJ"

This type of sampling is called ~ro~ortional Bamnlin~. With proportional.
sampling the calculatien of the estimate is particularly simple~ since

y :a -1- (t Nj Y ) =..L (t n Y j)
n N nj" n j n

which is simply the semple total divided by the sample size. Thus."no

weighting is required. Such samples are described as self-we1£htin£.

5.9 Theorem B: Case II of ~timum Allocation: Under the assumptions

of (38), above, i.e., cost proportional to cj n , the variance V(y ) is a
j n

minimum for a given total cost if n
j

is proportional to N
j

0j/Jcj•

Proof: This is parallel to Case 1, Sec. 5.5. The quantity to be

minimized is

Differentiating and equating the result to zero we find

(_N2/nG) 02 + X c = 0 •
j j j j

Then nj ~ Nj OJ/JCj •

Summing again in both members and substituting the result obtained for
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).,we obtain

n(Nj O/JCj>
~ (Nj O,j / ••rcj)

From the result for Case II, i.e., the variance is a minimum when n
j

is
proportional to Nj 0j/~' we deduce a simple statement of procedure for
stratified sampling with the cost conditions assumed:

In a given stratum. take mOre samples
a. If the stratum is larger
b. If the stratum is mOre variable
c. If enumeration is cheaper in the stratum.

5.10 Stratified Random'Samplin£ from u~inoml~1 T~en Po~ulat10ns:
We recall the discussion and theory presented in Sec. 4.1 to 4.7. The
whole pODulation falls into 2 classes. It is desired to estimate the
percentage or proportion in each of the classes. In stratified sampling
from this type of population we wish to divide the population so that the
sub-populations, or strata, are homogeneous. For example, the partition-
ing should put most or all of the l'yes' answers in one group of strata.
and the "no" answers in another group of strata.

The estimation proceeds as follows: We suppose nj sampled in
J th stratum, and observe that gj of the n

j
fall in Class I. Then

the estimated population proportion in Class I, we have

the
for

kP = ~
n j=l

~n order to estimate the variance we apply Theorem 6 and then Theorem 4.
Vi e had

V(Yn) = ~ ~ Nj(Nj-nj) o~/nj' By Theorem 4, 01 =
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nence, with p defined as in (46),
n

N (N. - n )
yep ) = ~l.t j J j

n 7 n
j

N
.1 p

N - 1 j qj
j

When the f~nite population correction can be ignored, we obtain

(4780)

To obtain a semple estimate of this variance, the observed values are
substituted for the Pj and.qj of (47).

The optimum allocation for sampling from _ "binomial type" population

is as follows:
Thus

Case I:

Ji;
IN - 1j

Then we have
n = Nj j

Note: The results of this section can be extended to the
"multinomial situation," refer Sec. 4.8.
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5.11 Relative Accuracy of Stratified Random and Sim~le Random Sam~les.
If intelligently used, stratification will nearly always result in a smaller
variance of the estimated mean, than is given by a comparable simple random
sample. However, it is not true that ~ stratified sample gives a smaller
variance than the comparable simple random sample: if the values of the nj
are far from optimum, stratified sampling may have a higher variance. The
principal result is summarized in the following theorem. In this theorem
the finite population cor~ection (f.p~c.) is ignored, i.e •• terms in l/Nj•
nj/Njo

Theorem 9. If n.1 oCNJ OJ (l.e.', the allocation is optimum in the sense
of Neyman) then for samples of given total size n, the variance of the mean,
Ynt for V opt. ~ V ran.

Proof; Some preliminary notes are needed. When the f.p.e. is ,ignored.
the formula for the variance of the estimated mean from a stratified sample is

V strate :; (50)

this reduces to

If nj - nBj OJ
(optimum allocation)-

I:Nj °j
2

V opt. :;
(I: Nj OJ)

cli2
N

as previously noted, see (30), (34), and (42). Further, if n
j

:; n NJ

(l.e., s~npling is proportional) the variance becomes

2
ENj OJ

V prop. = ----
nN

Now
V prop. - V opt. (53)

(53a)
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This result shows that V opt. will always be smaller than V prop. The size

of the difference depends on the amount of variation in the OJ.
We now pr.oceed to the main proof. For the simple random sample

V ran. =

where 02 is the va.riance of the whole population. But from an algebraic

identity,

. and since terms in.lfNj are negligible, this may be written

Hence,
V ran. =~=

n
+

E NJ (Ypj _ Yp)2

nN

+

D V prop. +

= V opt. +

(- - )2t Nj Ypj - Yp

nN

t Nj (OJ - 0)2

nN

(_ - }2
E Nj Ypj - Yp

nN

(55)

(56)

This proves the theorem. It shows that the increase in accuracy from optimum

a.lloca.tionarises from two fa.ctors: (1) elimination of differences among the

strata means, last term in the right member of (56), and (2) gain from optimum

alloca'ion over proportional allocation (middle term on the right). This

second factor 1s to be expected, since a simple random sample allocates the

nj roughly proportionally.
Note: If the f.p.c. cannot be ignored, the result of Theorem 9 becomes

V opt. ~ V ran.,
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Provided that

(57)

This provisional condition is 'likely to be satisfied in almost all applications.

5.12 An E~ple to Illustr~te Theorem 9: In Table 1 we present data

from a co~}lete census of Jefferson County, Iowa. The population consisted of

2,010 farLls. Rere we show the data for average corn acres per farm. Thus,

the s8m~1ing unit is taken as one farm and the item on which the stratification

is based is size of farm. Seven size groupings were established.

TAl3LE 1

AVERAGE CORN ACRES PER FARM BY SIZE OF FARM
JEFFERSONOOUNTY, IOWA

Stratum Farm oom Stratum Prop. Optimum 2
No. Size Nj Acres Total OJ Samp- Njoj A11~cat~on NjOjAcres ypj NjYpJ ling jnj

(l) (2) (3) (4) (5) (G) (~) (8) (9) (10)

1 0-40 394 5.4 2127 8.3 20 3270 10 27141.0

2 41-80 461 IG.3 7492 13.3 23 G131 18 81542.3

3 81-120 391 24.3 9515 15.1 19 5904 17 89150.4

4 121-160 334 34.5 11524 19.8 17 6613 19 130937.4

5 161-200 1G9 42.1 7110 24.5 8 4140 12 101430.0

,G 201-240 113 50.1 5651 26.0 6 2938 9 76388.0

7 241--- 148 63.8 9438 35.2 7 5210 15 183392.0

T CTAL - 100 34 ,20G 100 689981.12,010 y =26.3 52,857
P

The original data are shown in columns (1) - (G). For a total sample size

" of 100 farms, column (9) shows the sample sizes in the respective strata

for proportional sampling; column (9) givee the same data for sampling with

optimum allocation. Since the sampling rate, 100/2010, is about 5 percent,

the f.p.c. will be ignored throughout.
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We proceed to calculate the variances of the estimated mean for three

types of sampling. The variances are exact, since the complete population
is known.

-The variance of the sample mean, Yn• 1s V ran. =
2obtain 0 ,we may apply

• In order to

The first term on the right is given by the sum in column (10). Table 1•
. The second term on the right is given by summing the cross-products for

columns (4) and (5), Table 1, th~, t[5.4 (2127) + ••• + ~3.8 (9438)J '

and subtracting a correction term (52857)2/2010, which gives 557,007.1.

Summing the two terms, 689,981.1 + 557,007.1 = 1,246,98.8.2 = N 02, and di-
viding this result by Nn, we obtain V ran. = 6.20. ·The standard error is
then S.E. (Yn) ran. = j 6.20 = 2.49, and the coefficient of variation, O.V.,
is about 9.5%.
Proportional Allocation:

Using (52), we obtain for the variance of Yn with proportional sampling,

689981.1
nN

Then S.E. (Yn) prop. = J 3.43 = 1.85

V prop. = = 3.43.

c. V. = 7.Cf!,

Ontimum Allocation:
Finally, the variance of Yn for optimum allocation may be obtained by

using (51).
V opt. = (34206)2 = 2.90

nN2

S .E.(Yn) .opt. = 1.70

c. V. = 6.5%
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The comparison of sample size required to obtain the same accuracy by

the several methods is a useful measure of efficiency. For comparing pro-
.portional ,·11 th optimum allocation of the sample. we take n = 3.43

2.90
:x: 100 = 118.

Thus, about a 20% larger sample is required with proportional sampling to
obtain the same accuracy as ~iven by a sample of 100 under optimum allocation.
The comparison of simple random sampling with optimum allocation gives
n = 6.20

2.90 x 100 = 214 as the size of sample required to obtain the saJDe
accuracy as a sample of 100 under optimum allocation. This result, 214, is
slightly biased because we have ignored the f.p.cj the bias favors V opt.
because the size of the f.p.e. increases as n increases.

5.13 Descri~tion of a Sample Survey: Since considerable background in
stratified sampling has been given, we now discuss an actual sampling pro~lem.
A detailed description of this study is given by Deming & Simmons,Journal
of the American Statistical Association, March, 1946. Vol. 41, p. 16-33. The
survey. which used mailed questionnaires, was conducted in March 1945 for the
Office of Price Administration (OPA). The population consisted of a list of
140,000 tire dealers on record with the CPA.

The information to be obtained by the survey was (1) the number of new
truck and bus tires, and (2) the number of new passenger car tires, on hand
by the dealers. The previous information. which was available for designing
a sample, came from a fairly adequate census taken in September 1944 and a
sample taken in December 1944. :Both the census and the sample were taken
principally by mail, and apparently the circumstances were such that the
dealers replied readi~Y by mail.

In setting up a stratificat~on, a problem 1s met that 1s common to
most surveys. There are two main items to be estimated--new truck and bus
tires and new passenger C8r tires--and a stratification that is good for
one of these may not be effective for the other. In this situation, one
may either concentrate on the most important item, or try to reach some
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compromise that will be reasonably effective for both items. Deming and
Simmons chose the latter approach. P~om a study of the previous data,
they found (1) that many dealers (e.g., in service stations) had only car
tires' on hand (2) that dealers who had truck and bus tires tended also
to have car tires, and that the nUmber of car tires was roughly propor-
tional to the number of truck and bus tires. This means that a strat1-
ficntion of this group by truck and bus tires would be fairly effective
for car tiros. Also, they found (3) that some dealers primarily handlo
used tires. Those data led to the following classification of tho pop-
ulation.

TABLE 2.

STRATIFICATION
Group Size of

Designation Group
A 27000
B 40000
C 18000
D 2000
E 2000
F 24000
G 29000

OF TBE DEALERS FOR MARCH 1945 ClPA SURVEY

Description of groupDealers boldin~£ _

New truck & bus tires, except those defined
as "used tire" dealers, group C.

No new truck & bus tires, exc~t those defined
as uused tirell dealers, group C. ~

Used tires> 40, and < 40 new pass. or truck
or bus tires.

Large numbers of tires, 1.e., Mfrs. outlets
(Newly authorized dealers)·

*(Non-respondents of Sept. 1944 survey)
(Respondents sendi~ blank returns in tho

September survey)

*It is to be noted th~t m~~y in Group F mAY be out of business and
thE\tin Group G there mp.y be many who ha.veno tires on hand. The type
of stock held by group E is not known.

The second stage of the classification comprised a further division
of Groups A nnd B. The 27,000 in A were strntified by the number of now
truck nnd bus tires on hand with classes 1-9, 10-19, 20-29, etc. The
40,000 in E were separated according to the number of new car tires on
hnnd 'lith cb.sses of 0, 1.•.9, 10-19, etc.
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Tho next problem was the allocation of the sample number or size, i.e.,

the nj' to each stratum. The Nj were known and, since this was to be a

mailed survey, the cost would be proportional to the Nj• Therefore, optimum

allocation would be obtained by making nj proportional to Nj OJ' Again, a

question arises. With two principal items of information to be obtained,

fOr which item shall the allocation be made optimum--truck and bus tires,

or car tires? The item selected was new car tires, and it appears to have,

been a good decision.

The information on the relevant a's was obtained from the September and

Dec~ber surveys. The values as given by the December survey are shown in

the foll~ing table:

TABLE 3.

STANDABDDEVIATIONS OF THE STRATA - CPA T~ DE.U.ERS SURVEY
,

Size in Number
of Tires on Band

Group A *
1-9

10-19
20-29
30-39

GrouJ? 13***

o
1-9

10-19
20-29
30-39

New
Mean
Ypj **

14.8
21.0
34.2 **
34.2

1.0
6.7

13.0
24.7
32.0

Car Tires
Std. Dev.

OJ

18.2
26.3
40.6
28.2

3.6
8.2
9.9

11.4
12.4

1.23
1.25
1.19

.82
avg. 1.25

3.6
1.22

.76

.46

.39
avg. .75

~roup sizes are based on holdings of new truck ~d bus tires.

*~roup means are calculated from holdings of new Car tires.

**~roup sizes in13 are based on holdings of new car tires.
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From these data on the me~~s and standard deviations in the strata, two

general assumptions were made. For Group At Deming and Simmons took

OJ = 2 Ypj. and for Group ], ~hey took OJ = .Ypj' These were conservative
assu~ptions, though a greater variation in the survey to be taken in March

was anticipated.

Now, we consider the problem of determining the size of sample for this

survey. The accuracy to be obtained was specified. The coefficient of vari-

ation for total number of new tires on hand to be attained by the survey

was set at 1.5%, or .015.

where k is an unlmown constant to be determined,

t t1 a~then, V(Yn) = 1 _
N2 nj

Substituting for nj• we obtain

(omitting the f.p.c.).

/

In this survey the estimate w~nted was the total number of new tires on hand.

We write this estimate as Tn = N in' Hence, V(Tn) = k t Nj OJ' At this

stage we introduce from the preceding paragraph the assumptions on the a's

for Group A El.ndGroup]. and write

V (Tn) = k(~2 lIJ Ypj + ilIJ YP)

are over the strata in Groups A and], respectively,

where the summations

In this form, TA and TB indicate the population totals of number of tires in

the groups. From the last result, we write the coefficient of variation of

..(K J ~TA + TJ3
TA + T] ,
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Before proceeding further it was necessary to estimate the number of new
tires expected to be found on hand in the March survey. Such estimates
vere based on ,the numbers foul'ldon hand in the September and December sur-
veys. Dening and Simmons estimated

TA at 1.6 % 106

and ~ at 0.2 % 106 •

\'liththe C.V.{Tn) already set at .015. we can now Bolve for k. Therefore.

k=
2 2 12(.015} . (l.e) x 10

63.4.% 10
2: 214.

However, k was actually taken as 200 in order to·simplify further calculations.
This value of k required a sample size in Groups A and B of about 1:J; which
strictly requires the use of the f.p.c., although it was omitted.

The allocation of the sample to the strata is now straightforward. ,In
Group A we have nJ/N J = the fraction to be sampled within a stratum = oj/k =

2 Ypj/200. ,From this relation we obtain the percent sampled in the strata
of Group A = Ypj •. Similarly, ~he percent ~ampled in the strata of Group B =

YpJ/2 •. An estimate of the YpJ for each of the st~ata in Groups A and B that
would be found in the March survey then finally determined the strata sampling
rates~ In general, these values, Ypj' were estimated from the December survey
results. Table 4 below shows the sampling rates obtained for the strata in
Group A.
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TABLE 4.

SA1<PLING RATES IN GROUP A - OPA TrEE DEALERS SURVEY

Size

1-9
10-19
20-::91..
30-39J:g::~r
60+

19,850
3,250
1,613

894

1.662
27,269

Estimated Ypj Sampling
Rate

for March

15* 1 in 6
22** 1 in 5

~~ 1 in 3

~~ 1 in 2
7 (100% taken) 1 in 1

*(Docember value - 14.8) **(December value - 21)

The method employed for taking a random s~ple of 3,300 out of the

19,850, 600 out of the 3,250, ·etc. was as follows. The members of each

stratum were available on cards showing addresses. A random card vas chosen

as a starting point and all succeeding members of the sample were taken

system~tically at the designated sampling rate. Thus, in the first size

group in Table 4, every 6th card 'Was chosen thereafter. This method of

sampling is knO\vn as systematic s~pling and will be discussed later. In

computing sampling errors, the authors assumed that their samples were

equivalent to simple random samples within strata. Their comment on this

point is·tl~t tho sampling error of their B~~le is probably either equal

to or slightly lower than the result given by the use of stratified random

sampling formulae.
The remaining strata, i.e., Groups C through~, were handled as follows:

Group C - "Dea.lers holding more than 40 used tires": They were stratified by.
~umber of used tires, 40-49, 50-59, etc. Then a 25% sample, or 1
in ~, \'iDS taken in each stratum.

Group D - Manufacturers outlets: yp = 75 for this group on previous survey.
A 10~~ sample was taken.

~roup E - Ncwly ~uthorized dealers: One thous~d new dealers were authorized
between September and December. Hence, the size of the gro~p was
estimated as 2,000 for March, A l~ sample was taken.
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- Non-responses in September 1944: This group comprised 24,000
dealers. For the December survey a ~ sample (n ; 997) had
been taken from this group. The sample was classified into
these categories:

(1) . Out of business 217
(2) Unidentified 310
(3) Located and schedule returned 470

The (3)rd category showed 11.9 new tires on hand per dealer in December.

This indicated that Group F as a whole held many new tires. Determination of

the B~liTl)lingrate for Group F then followed thi s reasoning: Yp'~.11. 9 (470/997)=6

from which 0 was estimated as 3 Yp or approximately IS. ~y using the relation

nj/Nj = OJ/k ~ IS/200 = ~ was obtained as the sample size in Group F. This

vnlue was deliberately cut to 5%, because of the difficulty of actually se-

curing the sample from this group, 1.e., greater cost.

Gro~~ G - Dealers sending in blank returns: This group was assumed to

bave few new tires. A 3fo sample taken in December showed only 2.3 new tires

per dearer. The comparison of this value with the first two strata of Group

B, which had similar means, indicated that 0 = 2 Yp might

assumption~ Again, the application of nj/Nj ~ Oj/k gave

sample. It wa.s decided to take a :5J'o sample of this group

BurvllJ'.

be a reasonable
::: 2.3%

again for the March

Summary: Tho results of the March survey indicated that the desired pre-

cision had been attained. The ex~mple illustrates how sampling theory is

combined ,~ith data from previous surveys to plan a new survey efficiently.

5.14 Estima.tion from a. San1'Oleof the Gain Due to Stretification: The

formulae in Section 5.11 enable us to estimate the gain in accuracy due to

stratification when a complete census of the population has been made. A

similar estimate can be obtained when a stratified random sample has been

taken. This estimate gives an appraisal of the utility of the stratification

that was ado~ted in the survey. We will ignore finite population corrections

in this section.
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The data available from the stratified sample are the values of Nj, njt

Ynj' sJ (estimate of the within-stratum variance O~). With the f.p.c. ig-

nored, the estimated variance of the mean of the stratified sample is

Estd. V strate = (58)

where Wj = NiN.
Je ••.,ish to compare this with an estima.te of the variR.nce of the mean

that would have been obtained from a simple random sElmple. Now

V ran. = -l..
n

(N ) 2 N (- - )2j - 1 OJ + t j Ypj - Yp

(N - 1)
(59)

Since terns in l/Nj are negligible, this may be simplified to

From the results for the stratified sample, there is no difficulty in

(60)

obhining an estimB.te of the first term inside the bracket. The second term

requires investigation, since Ypj and yp are not known.

Now
Ynj = Ypj + enj' where enj _is an error of sampling with V (enj)

lienee

Thus

Also

Renee
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Subtract (64) from (62).

-I:
It folIous that an unbiased estima.te of

is given by

(65)

Finally

(66)

(67)

In order to illustrate the ccmputations, we present a numerical example.
The data are taken from the CPA Tire Dealers Survey as reported by Deming
and Simmons (refer Sec. 5,13).

TAJ3LE 5.

DATA AND CALCULATIONS FOR ESTUiA.TING GAIN DUE TO STRATIFICATION
GROUP A - OPA T IRE DEALERS SURVEY

Size of Nj - 2 Wj W2 2/ Wjs~/nj WjYnjnj Ynj Bj j Sj njStratu:n
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1-9 19850 3000 4.1 34.8 .8032 .00748 .00932 3.29312
10-19 3250 600 13.0 92.2 ,1315 .00266 .02021 1.70950
20-29 1007 240 25.0 174.2 .0407 .00085 .02085 1.01750
30-39 606 -.a30 38.2 320.4 .0245 .,L00084 .03413 .93590---41'70 1.0000 .01183 .08451 6.95602
--
From the data in Table 5 t we find

V strate 2 2/ _ .01183 (68)= I: W. sJ nJ -J
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Now,

~ WJ .~ + t WJ (~PJ - ~p}jV ran. = --Ln

= + [55.02 + E WJ (~pj - Yp}2] • (69)

The second term in the brackets in (69) we estimate by applying (66).

W -2 (;nj)2 2/ 2 2/Q,=1: j Ynj - 1:Wj., -1: Wj Sj nj +t Wj Bj n.1

(6.95602)2 - .08451

Then,

= 96.91

V ran. =

+ .01183 = 48.45

1 (55.02+ 48.45) = .02481 ,
4190.

(70)

(71)

whereas V strate was .01183.
The reduction from V ran. exceeds 50%, since the ratio of the variances is

.01183/.02481 = .477.
Simnlification when o~ is constant 8Jld samol1ne: is 'Pro'Cortiona)..In

this case, which often arises in sampling field experiments, the results

simplify considerably.
We have

= = Wj in all strata

o~ = constant which we write as = 0:
This is estimated by the 'Cooled mean square within strata, Then we

have
Zstd. c V strat. = 1: n •

:Estd. V ran.

k--n

from (58), (66), and (61). The quantity ~ now becomes
2

By
s2 +--w n
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Hence.
:Jstd. V ran. = _1_

2n
(75)

This ~uantity is easily oalculated from an analysis of variance of the
~sample data into "~ong strata" and "~l" strata".

Analysis of variance for the stratified s~~le.

Among strata
Within stra.ta

d.f.
(k - 1)

(n - k)

From this the formula. (75) may be written

Estd. V ran. = ..;.L ~k-1) :B + (n-k + 1) vJn2
while

Estd..V strate = ..L w
n

(77)

Example: In sampling a field experiment for estimating number of wire-
worms on er.chplot. the plote were divided into halves and three random
samples of s011 were taken w1th a small boring tool in each half. (The
sample waS 9" square to a depth of 5"). There were 25 plots in the experl-
mente The ana~sis of variance of numbers of wireworms val as follows.

Between strata (half-plots)
\H thin strata

·d.f.
25

100

M.S.
90.76 = l3

38.44 :I W

Note that the conditions in the example are slightly different from
those in the theory presented above. Each plot represents a separate pop-
ulation, divided into 2 strata. Thus k = 2 and n = 6. The analysis of
variance gi~'es the combined results for 25 stratified samples of this type.

Est. V strate :s
38.44

6
= 6.41
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Est. V rsn. D 3t [ll + ~

R.E. = 7.86/6.41 • 1.23.

[90.76 + 5(3B.44~ D 7.86

Thus, stratification into halves increased the accuracy of the experiment by
slightly ~~der one-fourth.

5.15 COhfiden?e Limits ~nd Sam~le Size for Stratified Random SamDline:
The variance is more complicated with 'stratification than with simple random
sampling. (Refer Sec. 3.1 ff.) Functionally, we may express this variance
in general as

After the determihation of the strata, the first step is to allocate the
sample to the strata, or to determine the ratios nj/n. When this has been
done, we may write the variance as a specific function

At this stage we note again that either the a's must be known Or good
estimates of them must be available. Then the confidence limits are
Yn 1: t(a.)J V Gn) •. To determine sample size, we equate t(c:x.)j V (Yn) to
d, the specified confidence limit, and solve for n.

As an illustration of the above procedure, consider Case I of optimum
allocation with cj = c = a constant. In (41) the minimum variance was ex-

pressed as

v Gn) min. = _1_ t(~Nj

n
°j)2 - L Nj 02 (.n)

N2 j

Therefore

J 2
t(CL) (l; Nj OJ) L Nj 02 = d (78)-}.j n j
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From (78) we obtain the solution for n as

n = (79)

As a first approximation, the finite population correction is neglected.
This gives

n =o

t2(a.) (I: Nj OJ).2

~ d2
( 79&)

When no/N is not negligible. n is calculated directly from (79).

An interesting corollary can be derived from (51). Suppose OJ = 0 =
a constant. Then we have

n =
~ N2

N
2

d
2

+ N 02
t2(a,)

=
1 +

t2(a.) 02/d2

t2{a,) 02
N d2

(ao)

This result has ·the same form as was derived for simple random sampling.

Thus,

n =o

and

n = •

The assumption that oJ is constant is not unreasonable for some types of

field cr~ps or soil samplings. But the assumption is less plausible in

human saIDJ?ling,e.g., business and economic inqui~les. where the OJ are

usually quite variable.

If ~royortional sampling is to be employed, the sample will be allocated

according to the size of the strata, i.e.,

_ n--
N
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and then
n :s
j •

As shown in ~heorem 6 the variance for a stratified sample when we do not

have optimum allocation is' given by (30), Hence, we may write

for nj in the formula for estimating V prop. we obtain

t (a.)
N J = d.

n =o

If n is solved for in equation (82) the result 1s
2

02t (a.) t Nj
J

Nt Nj ~ d~
n =

d2 U2 ( t
2(,,)t IlJ '11 (83)+ . 2

t2(a.)
t Nj OJ 1+7

d2

Similarly, by ignoring the finite population correction factor, a first

approximation becomes, from (52),

t2(a.) t Nj O~

d2 N

If no/N is not negligible. n must be calculated from (83).

5.16 Proximity as a Basis for Stratification: In Section 5.1 one of

the advantages presented for stratified sampling was the possibility of

securing increased accuracy from the sample by dividing a heterogeneous

poptuation into homogeneous groups. Succeeding sections have shown how this

is obtained. The question arises, lIWhat criteria should be employed in

stratifying a given population which is to be sampled?"

So far as possible, the criteria should be such that each stratum is

homo~eneous with respect to the items that are to be obtained in the survey.
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Sometimes the most appropriate criteria are rather obvious from the nature

of the survey; in other cases investigations are conducted in order to com-

pare the effectiveness of different criteria. Frequently a compromise must

be adopted, since the crit~rion that gives a good stratification for some

items in the survey is poor for other items that seem equally important.

Discussions of bases for stratification for economic items have been given

by Stephan (13) and Hagood and :Bernert (14), and for farm items by King and

McCarty (15).

One ?rinciple that frequently holds is that adjacent sampling units

are more alike than sampling units that are far apart. Henoe, proximity

of the units, or a geographical division of the population is used as a

basis for stratification.

To indicate the results given by thi8 procedure we shall consider

several examples. The comparison of geographical stratific~tion with simple

random sampling may be made by calculating the relative efficiency. Here

the relative efficiency of the stratified to the simple random sample is

defined as the inverse ratio of their ~le.nces;that is, the variance of

Thus, R.E. =
the mean from the random sample is

the stratified sample.

divided by the
V random
V strate

variance of the mean from

In (84) equal sized samples of n are as~umed for both methods, simple random

and stratified random sampling. When the finite population correction is

negligible, (84) also gives the relative sizes of sample that must be taken

to give the same variance for the estimated mean. This can be shown as

follows: Su~~ose that the random sample is increased in size fron n to

rn. Then, the variance of the mean of the random sample becomes ~/rn or
V random Now, if r is chosen that V random = V strat., "'e• sor r

obtain V randomr = = R.E. (85)
V strate
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As the first example, we consider a problem in the counting of forestry

nursery seedlings, refer F. A. Johnson (16). The seedlings were grown in

lon~ narrow beds. Sampling units were narrow strips across the beds. The

number of seedlings in each sampling unit was determined by counting. Each

bed was divided into about 20 strata~ The pertinent results for comparing

the s~aJling methods are given in Table 6.

,
I

t

I,
.,
I

TABLE 6.

Ty-.)eof Seed1ins::'

Silver Maple
American Elm
White Silruce
Uhi te Pine

R.E. or r •
I

13ed *1 13ed *2 t,
1.29 1.49 I

2.79 1.32 ,
1.16 1.8a I

1.15 I

t

Table ? shows results obtained for a number of typical farm economic

items. In these investigations different sizes of strata were compared:

townshiys, four-township blocks, counties, and type-of-farming areas within

a state. A mean relative efficiency was calculated by averaging the indi-

vidual relative efficiencies for each item.

TAB~ 1.

State No. of
Items

Twp. 4-Twp. *County Type of
farming

area

State

I Iowa - 1938 18 115 100
Iowa. - 1939 19 121 100
Florida - 1942

Citrus fruit area 14 144 119 100
Truck f",rMing area 15 111 100

California - 1942 17 113 100

96
97

97

91
91

*Average rela.tive efficiencies were converted to a relative basis in each
CEl.seb'r taking the county value as 100. Refer: Jessen (12) and Jessen
& Houseman (17).
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In both examples the increases in accuracy from geographic stratifi-

cation are moderate rather than large. This appears to be typical of re-
sults with eeographic stratification.

5.17 Effects of Errors in the Strata Totals: It frequently happens
in practice that for some'desirable type of stratification the strata totals
Nj are not known exactly, being perhaps derived from a population count that
is out of date, or from another sample. Definite statements about the con-
sequences of basing a stratification upon erroneous weights cannot be made
without considering particular eases. A tew conclusions of a general nature
can, however, be drawn.'

For si~_)licity, finite population corrections will be ignored and the
cost per unit is as.sumed the santein all strata. If the Nj were known. nJ
would be chosen equal to nN..,OJ/E Nj OJ' The sample estimate of the popu-
lation r.1ean\'Iouldbe t Nj Ynj/N, which may be written t Wj Ynj. Its var-
iance Bim~lifies to

n

Instead of the true stratum proportions Wj, we have estimates wj•

(86)

The
sample estimated mean is t Wj Ynj. The first point to note is that this
estimate is biased. Its mean value in repeated sampling is t ¥j Ypj'
while the true population mean is t WJ YPJ' The bias amounts to
t (wj - Wj) Ypj.' Consequently, the error variance of this estimate contains
two components: the variance about its own mean and the square of the bias.
If optimum allocation is used (with, of course, the Nj replaced by their
estimates) the first component is (~ ~j OJ)2/n. 'The total variance is

n

A more general form

+ [ E (" j _ Vj) Ypj) 2

of this expression was given by Stephan (13).

(87)

He points o~t that the first term in (87) will usually be about the same
size as (86) they are exactly the Bame
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if the variance is the same in all stra.ta. The loss of 8.ccuracy from

incorrect weights thus depends mainly on the size of the bias, which in

individual Cases might either be small or large. Further, for any given

set of erroneous weights, the loss varies with the size of semple taken.

This is SO because the 'bias' component of the total variance is independent

of the size of sample. With increasing sample size, a stage is reached

where the Ibias' term predominates, and where the stratification would be

less accurate than simple ~andom sampling.

The ~receding discussion does not help much in considering whether to

stratify in a survey where the weights are known to be in error, because

the size of the bias ,term cannot be predicted. Occasionally a standard

error cen be attached to the estimate of ea.chNj, from lmowledge of the

process by which these were estimated. If the estimates of the Nj are

independent, and independent of the YnJ, the average value of the bias

component of the ,total variance is roughly, refer Cochran (18),

~ (Ypj _ Yp)2V (Nj)/N2 (88)
where V (N

j
> is the variance of o~ estimate of Njo This quantity measures

the expected increase in variance due to errors in the Nj•

King, ~icCarty and McPeek (19) applied this formula in research di-

rected towards the estimation of yield per acre, protein and test weight

in the wheat belt. They discuss the advisability of stratification by

districts within each state. The total acreages Nj for each district

were tha~selves estimated by a sample survey, so that Borne knowledge of

the V (Nj) "la.sa.vailable.

5.18 Case Where tho Strata Cannot be Identified in Advance: In

certain com:~on types of survey it is not possible to tell accurately to

what stratum a sampling unit belongs until the data have been secured

from the unit. For example, in an election poll it may be useful to
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stratify according to the individual's vote at the last election. This

will not be known until the individual has been contacted. A similar

situation arises in a gre~tcr or less degree when stratification is by

factors such as income, occupation, religious affiliation, ownership of

telephone, etc. Of course, in such cases it is also likely that the strata

sizes Nj may not be known exactly; we will, however, assume for the present

discussion that reasonably good estimates of the Nj are available.

One procedure that can be used is to take a simple random sample of

size n. Then classify the units into the strata on the basis of the 1nfor-

mation obtained about them. If YnJ 1s the mean of these units .that fall

in the j th stratum, use as an estimate

In other words we use the ~ strata sizes as weights to obtain a weighted

mean, instead of taking the unweighted mean of the sample as our estimate.

If the sample is reasonably large, this technique is almost as accurate

as nrouortional stratified sampling. Let mj be the number in the sample

that fall in the j th stratum, where mj will vary from sample to sample.

For sanples in which the mJ are fixed,

= (90)

where the f.p.c. is ignored. The average value of this quantity in re-

peated saD~ling must now be calculated. This requires a little care,

since it could happen that one or more of the mj were zero. If this oc-

curred, we should have to combine two or more strata before making the

estimate. This would give a less accurate stratification and a higher

variance for y. However, with increasing n it may be shown that thew
probability that any m

j
is zero is SO small the.t the contribution to the
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variance from this source is negligible.

If the cS.se \-lherernj is zero is ignored, Stephan (20) has shown
-2that to terms of order n •

E ( -L ) 1 1 1= +mj nWj n2 W n2 W2
j j

whero Wj = Nj/N. Hence, substituting in (90) ,

E {V (yv) } = -;- t Wj a~ + 0 (n-2)

The leading term is the variance obtained with proportional stratified

sampling (Sec. 5.14).

II.

5.19 Quota Samnlin£~ Another method that is used for this problem

is to decide in advance the nj values that are wanted from each stratum

and to instruct the enumerator to continue sampling until the necessar,1

"quota" has been obtained in each stratum. In the later stages of sampling,

this may require considerable work on the part of the enumerator since

most of the units that are contacted may fall in strata where tho quota

has already been met. If the enumerator chose tho units initially at

random, rejecting those that in later stages were not needed, this method

would be equivalent to ordinary stratified sampling. The extra field

work required to fill every quota might be very substantial.

As this method is used in practice by a number of agencies, the

enumerator does not select units initially at random. Instead, he may

use any information that will enable the quotas to be filled quickly

(e.g., such as that people earning high incomes are not likely to live

in slums). The object is to gain the advantages of stratification with-

out the high field costs that might bo incurred in an attempt to select

units initially at random. The amount of latitude permitted to the
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enumerators varies from case to case. Unfortunately little is known

about the accuracy of such "quotall methods as used in practice, relativo

to trat given by more objective approaches.

5.20 The Problem of Non-Response: In many types of survey, there

are certain units in the sample from which the desired infornation can-

not be obtained at the first attempt. With human populations, this

grou~ may be persons who are not at home, or do not reply to a mail

questionnaire. In crop surveys certain fields in the sample may not be

ripe when the sampler reaches them. This Inon-res~onsel group consti-

tutes an important practice,l problem. To obtain information from it

D2~ require several attempts nnd be costly. To ignore it may result

in ~ sample tha.t has a bias of unknown dimensions. An ingenious al1pli-

cation to this problem of the idea of str~tified sampling has been

made by Hansen and liurwitz (21).
The popula.tion is envisaged as containing two ~trata. One, of

size N1 contains units that provide the information at the first try.

The second, of size N2, is the non-response stratum. The basic idea

is that the second stratum should be srumpled at a lower rate than th~

first, since the cost per unit is higher in that stra,tum. There is,

hO\'lever.'the complica.tion that neither the va.lues of Nl and N2, nor

eVen the units tha.t fall in the t\-fOstrata, is known in advance.

The first step, in the sim~lest case, is to take a random s~?le

of n units. Of these let nl be the number tha~ provide the data sought,

lli1Q n2 the number in the non-response group. By repeated efforts, the

data are later obtained from a random sample of rZ ,out of the nZ' If

n = kr2 2

the qU$ntity k is the ratio of the samplin~ rate in the first str~tum

to that in the second. The values of n (initial size of s~?le) and k
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are chosen so as to give a specified accuracy for the lowest cost.

The cost of taking the se.mple is

O=cn+cn +cr01122

~!~ere the ere are costs per unit: 0 is the cost of making the first
o

attempt, while c1 and O2 are the costs of getting and processing the

dat~ in the two strata respectively. Since the values of nl and nZ
viII not be known until the first attempt is made, the eA~ected cost

uust be used in planning the sample. The expected values of n1 and

Thus e:r.;;>ectedr are respectively WIn and W n/k, where W1 = Nl/N.2 - 2
cost is

c n + clWln + c2W2n/k ,0 (95)

Let YI ,y be the sample means in the t",o str?te., res-,)ectively,n ~r -
where the suffices n, r are used as a reminder that the sample in the

first stratum is of size nl, while thP-.tin the second is of size r2•

~s an estimate of the population total, Hansen and Hurwitz take

y.s
N
n

( 96)

Note that the second str?t~~ receives a weight nZ' although the saMple

is only of size r2, This is done in order to obtain an unbiased esti-

mate.
The calculation of the variance of this estimate is not as strairht-

f01"Jard as it might sepm at first sight. For \"hile n may be re[;[!.rded

as fi~ed, nl and n2 and consequently r2 vary from semple to s2B?le as

'..'ell as y and y • In f?ctt n ~nd n follCl'tlbinomial distri-In 2r 1 2
butions with probabilities Nl/N, Na/N, respectively. We will suppose

t~4t k is fixed from sample to semple; 1,e., it has been decided before-

hand to what e~tent the second strat~~ will be under-sam~led.
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The easiest method of finding the varifl,nceis to introduce the

qu~tity Y2n' that is, the mean of the whole sample of size n2 from

t~e second stratum. We ~ay introduce this quantity by e~~ressing (96)

as follows.

(97)

The first quantity is simply N times the mp.an of a random sample

of n from the whole population~ Its variance is therefore

where 02 is the variance of the whole population. Further, when we

find the variance of y. 'there will be no contribution from cross-s,

~roducts between the first and second terms. For if we average

over all random samples of size r2 that can be drawn from a fixed

sample of size na, the average will be zero. Consequently,

V(y ) =s f02 2}E n (y - y )2 2r 2n

Consider the second term. If Y2p is the population mean of the

lnon-responsel stratum, we have

SO tl'.a t

(y - y )
2r 2n

+ (99)

(_ -)Z ( __ )2 (__ )Z ()
E Y2r - YZp = E YZr - YZn + E Yan - Y2p 100

there being no contribution from cross-product tf'rms for the same

reason as before. Now Y is the mean of a random sample of sizeZr
rZ from the second stratum, and y2n is the mean of a random sanple
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of size na from the same stretum. Hence, for fixed na ~nd ra'

(Ira - r2)

N2 , (101)

, ai' ,w~~ere 0a s the variance within the non-response stratum. This gives

from (93) and (101). Substitute in (98). Then

N(N-n)
---- 02 +

n
v(y) =s

=

=

N(N-n)
n

N(N-n)
n

~ (k - 1) 2 E (n2)
na O2

N2
(k - 1) 02 nN2

n2 a N

N Na (k-1)
.~ • (103)

n 2

The first component is the variance that would be obtained if all

na in the non-response group were sampled: the second is the increase

fror,l~a1'1Pl1ng only ra of the na. The quantities n end k are then chosen

to minimize (95) for a pre-assigned value of (103).

The solutions are:

k
ca (,,2 _ Wa O~)

(104)as

a (Co + cl ill)°a

11 [02 + Wa (k-l) o~Jn = (105)
v + oa
N
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\Jhere V is the value assigned to V(y ), the variance of the estimateds .

population total. These formulae are identical with those given by

Hansen and Hurwitz, though they appear on inspection to be slightly

different. The difference arises because these authors use divisors

Nand N2 respectively when defining ~ and o~, whereas we have used

(~-l) and (N2-1).

The solutions depend on the unkn~Tn WI e.ndW2 ~ If fairly close

estimates of these can be made from earlier experience, the estimates

may be used in place of the unknowns. Even if nothing is known in

advance about WI and W2, the authors develop an alternative method

that gives in most cases a solution close·to the optimum. Extensions

to stratified s~apling and to ratio estimation are also presented.

5.21 First ex~cle: This example is taken from the paper by

Honsen and Hurwitz. They suppose that the first sample is taken by

me.il, and tha.t the response rate is 50 percent. Further, the variance

within the non-response group is the same as that within the whole

?o?ulation (this is unlikely to be exactly true in practice, but might

serve as a first approximation). If these assumptions are made and if

the f .p.c. is ignored, the vEl.rianceof the est imated mean, from equa.-

tion (103), simplifies to

Thus all samples for which (k + l)!n have the same value will provide

e~ual accuracy. As a standard of comparison, they choose an initial

semple of size 1,000, in which all 500 non-respondents are later

visited: that is, n = 1,000: k = 1. To obtain equal accuracy with

other samples, we must have
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Such samples are shown in Table 8 for initial mailings of 2,000 and

5,000 schedules.

The cost in dollars was assumed to be of the form

'Thc~c costs were obtained by nssuolng that the co~t is 10 ccr.ts ~cr

ClUl'otion::r.ircT'..Q.lled, that the r-roccBs1ng of a. completed questionr.o.ire

costs 40 cents and thnt it costs $4.10 to c::l.rrythrough r.field inter-

./iC\'1. :Z::'.(' cc~h :.f the thrc"o 8ar.tp1esdescribed above are shown in

Table 8.
TABLE 8.

SAi·.PLES OF DIl".I!'ERENT SIZES THAT LEAD TO SAME PRECISION OF
RESULTS, THROUGH JOINT USE OF MAIL AND ENUMEBATION

METHODS ASSUMING A 50 PERCENT RESPONSE RATE

n n n r Schedules COst1 2 2 Tabulated

(1) (2) (3) (4) (5) (6)

1 ,000 500 500 500 1,000 $2,550
2,000 1,000 1,000 333 1,333 2,099
5,000 2,500 2,500 218 2,118 2,151

n = Number of questionnaires mailed out

n1 ::Number of mail respondents

n2 = Number of non-respondents to mfl.ilcanvass

r2 = Number of field interviews among the non-respondents

The middle sa~ple is the cheapest: in the·first sample there is

too much sampling of the non-respondents, while in the third sample

triere is too little.

In this way we could determine the most economical sam~le by

trying various combinations of n and k. Alternatively, by
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substitution in (104), we find that the optimum k value is ~,

or 2.739. This gives n = 500 (3.739), or 1,870. Consequently, the

optimum sample is such that 1,870 schedules are mailed initially. Of
not

the 935 that are~retur.ned, we enumerate by visitation 935/2.739, or

341. The cost will be found to be $2,096. It is evident that the

nliddle of the three samples in Table 8 was very close to the optimum.

5.22 Second exam~le: This is intended mainly to illustrate the

type of bias that arises quite commonly in samples taken by mail: it
~is not an application of the Hansen-Hurwitz approach. The data come

from an experimental sampling of fruit orchards in North Carolina,

conducted in 1946. A list was available showing the number of fruit

trees for each grower having more than 100 trees. The object of the

sample was to obtain information about the number of peach trees and

their production of peaches. (More accurately, the Object was to

devise and study methods for estimating such data by sampling).

A schedule was mailed ·to each member of the population. There

was less than a 10 percent response. A second and a third mailing

were sent out: these together raised the response to 41 percent. The

returns to the three responses are summarized in Table 9. The prin-

cipa1 points of interest are: (1) the steady decline in the number of

fruit trees per grower in the successive responses, these being 456

at the first request, 382 a.t the second, 340 at the third, and 290 for

the non-respondents. The larger operators tend to resuond more

e~sily: (1i) Both the second and third reque~ts were substentially

more successful than the first,
After the third request, a visitation survey. which ~ill not be

described in detail, was taken from the non-respondents. This survey

was stratified according to the number of fruit trees per county in

the non-res,ondent group and to the location of the county.
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TABLE 9.

;:':S?ONSE TO THREE REQUESTS OF A lvLb.ILED INQUIRY SENT TO GR01'lERS
nT NORTH CAROLINA HAVINe;. 100 OR MORE FRUIT TRDS *

No. of No. of Average No.
Growers F rui t of Fru1 t Trees

Trees per e:rouer

Gro\'lers on the mailing list to 3,241 1,064,899 329
whom schedules were sent.

Schedules returned unclaimed. 125 39,442 315

Remainder of Population 3,116 1,025,457 329

ReslJOnse to first request 300 136,859 456

Response to second reQ.uest 543 207,662 382

Response to third request 434 . 147,387 340

Tota.l Response 1,277 491,908 385

Percent Total Response 41% 48'f,
Cotal Non-Respondents 1,839 533,549 290

~erccnt Total Non-Respondents 59% 52;&

*Six counties of concentrated peach production were dealt with
seyar~tely,. 1.e., by a complete enumeration.
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Systl?ma,ticSalll'Dl1n~

6.1 We now consider a method of sempling, quite commonly used,

t~~t differs markedly ~rom random sampling. Suppose that there are

N = nk units in the popul~tion and that these are numbered. To se-

lect a spmple of n units, we take a unit at random from the first k

units; ~nd e,rery kth subsequent unit. For instance, if k is 15 and

if the first unit drawn is number 1S, the subsequent units are numbers

28, 43, 58. and sO on. The selection of the first unit determines the

wnole sample. This type of sample will be called en "every kt~1 sys-

tema.tic sample.

The apparent advantE',gesof this method over simple random sampling

are:

(1) It is easier to draw and often e~sier to administer without

mistakes. The saving in time of drawing may be quite large if slight

departures are made from the strict " every kth" rule. For instance,

if the nnits are described on cards which have not been numbered but

which are all of the same size and lie in a file drawer, a card can

be drawn out, say every inch along the file, as measured by a ruler.

~his operation is very speedy, whereas strict random sampling would be

rather slow.

(ii) Intuitively it seems likely to be more accurate t:~ random

sruapling. In effect, it stratifies the population into n strata,

r-amel~ the first k units, the second k units and so on. Ue might

therefore expect the systematic sample to be a.bout as accurate as a

str2.tified r~mdom sa.m:01ewith one unit per stratum. The difference

is that with the systematic sample the units all occur at the same

rel[',tiveposition in the stra.tum, while ,lith the strp.tified random

sample, position in the str~t~m is determined separately by randomization

within each stratum. The systematic sample is spread more evenly over
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the ~opulation, and this fact has sometimes made it considerably more

accurate than strptified random sampling.

In practice, one variant of the systematic sample is to choose

each unit at or near the center of the stratum: the idea being that

it will represent the stratum better than if it occurs near one end.

No ttorough investigation of the efficr.c7 of this type of sampling

OJ

appears to have been made, and attention will be confined to the case

where tho first unit in the sample is drawn at random from the first

k in the population. The sampling theory was first developed by

w. G. e~d L. E. Madow (22). It is rather more complex than might

have been expected.

6.2 Sampline theory: For simplicity in presenting the theory,

we assume that! is exactly equal to ~. where n is the size of

saJ:r~leto be taken and ~ is an integer. In practice li will be of

the form (nk + r)J where I is less than k. This will disturb slightly

the results stated below in Theorems 10 and 11, which are not exactly

true. The disturbance is probably negligible if A exceeds 50.

Theorem 10. The sample mean Yn is an unbiased estimate of the

population mean

Proof: This is rather obvious. Let the observations in the population

00 Jrl' Y2' . . • Ynk' and let

mi = { Yi + Yi+k • • • . + Yi + (n-l)kr In • ( 106)

,
If Yi is the observation chosen when we draw the r~ndom nunbsr be-

t"lce::n1 and k in oro.er to stA.rt the sample, then 1!1i is the correspond-

ing semple meon. Since every .1 between 1 ~tnd k is equally likely to be

.selected
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From (106) this is clearly equal to -y •
p

VnriAnce of the estimate. The vari~nce may be expressed in a

nW1bcr of different ways. One forn, due to the Madows (22) is given

in Theorem 11.

Theorem 11. The variance of the mean of the systematic s~~ple is

v <Y ) = 0
2

{ N-l
n n N

+ L.
n

n-l
1:

d=l
(n-d) p' kd }

where jC'kd 1s the non-circular serial correlation coefficient for lr,g'

kd, defined by the equation

?roof: By definition,

- y) .1> (107)

v G )= E (y _ y ) 2 = _I_
n . n P k

k 2 1 k 2
1: (mi - Y

p
) = 2 1: (nn.-nY)i~l n k 1=1 L P

When this is squared and added over all k values of ~, the sque.red

terms amount to

N
1: (y _y )2 = (N-l)

1=1 i p
2o •

~he cross product terMS will be seen to involve every pair of observa-

tiona th8.t differ by a.multiple of k. These may be grouped according

to the multiple of k. Thus there are k(n-l) ~roducts from observations

that are k units apl'l.rt:k(n-2) products from observations that are 13k

units apart, and so on. Consequently

v(oy ) :: _.1 {<N-l)n 2n k

k(n-2)
+ 2 1:: (y i - Yp)

i=l
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~'rhon we introduce the seria.l correlat ion coefficients as defined in

(10?), this becomes

v (y )n =
( n-l

02 + 2k I:l (N-l) d=l

=
n

n-l
+ ~ I:

n del
(loe)

Note: For a. random llBJnIlleof size n, the corresponding result would
be

0
2 (N-n) 2 (k-l)V C ) = = aYn v •Nn n • k

Fornula (lOa) shews thnt if the serial correlation coefficients arc

positive, the systematic sample is less accurate than tho random sample.

The formula also suggests that if the serial correlation coefficients

nre negative and sufficiently large, the systematic sample is likely

to be more accurate. Since it is difficult to visualize what ve~ues

the serial coefficients will take in a particular population, no

siml)le general conclusions about the efficr'clr

can be drawn from the formula.

of systematic sam~ling

Theorem 12: This gives an alternative form for V(y ) which isn

more suitable for comparisons with stratified samples.

V(y ) ==n
N-n

N

2ow
n

~
n

n-l
I:

d=l (n-d) f' }(kd) w (109)

"Thero 02 is the "within-stratum" average varianc~, defined byw

2 n
(Yi - Ypi)2n(k-l) a = I:w i=l

y . being the meS.n of the str~tum to which Yi belongs. Further,
1"lJ.

is the "within-stratum" serial correlation coefficient for
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l~G kdt defined by

ken-d)
I:

i=l

Proof: This is similar to that of Theorem 11. Since

-ny = y
p Pi + Y +

Pt i+k • • • + ~p. i+(n-l)k •

The rest of the proof follows exactly the seme method as in Theorem

11, and will be omitted.

Note: For a stratified random sample with one unit per stratuo, the

corresponding result is

v (y ) =n
(N-n)

N

2aw
n

Comparison with (109) shows that the systematic and stratified random

s~)les will have equal accuracy if the lag correlations within strata

are zero for all pairs of units that are a multiple of ~ apart.

6.3 Further comparison of systematic with r~ndom sacplcs: As

has been indicated, there are no simple general results about the

cccuracy of system~tic samples relative to random and stratified

random s~~ples. Comparisons c~n be made for specific populations

either by the preceding variance formulae or by direct methods.

Several are given by the Madows (22). Two will be described briefly_

Linear trend: If the population consists solel~r of a linear

trond, we mp,y assume tha.t Yi = 1. Since

N(N+l) (2N+l)
6

N
Zi =

i=l

N(N+l)
2 •
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the population variance 02 is given by

N(N+l) (2N+l)

6
= • (110)

Hence the variClnce of the mean of a r~ndom spmple of size 11 is

v =rEIn
(N-n)

N
• c? =

n
nldN+l)

l2n
= (k-l) (N+1J

12

2To find the variance within strata ow' we need only replace I

by ~ in (110). This gives

v =strat
(N-n)

N

2a
.2 =

n
n(k-l)
. nk

k(k+l)
l2n =

Tho vpriance for the systematic spmple may epsily be found directly.

It is clear that the me~~ of the second systematic sample exceeds that

of the first by 1, while the mepn of the third exceeds the.t of the

second 'by 1, and sO on. Thus the means may 'be represented by the

n~bers 1, 2, 3, • . • • ~ Hence

1:: (Yn - )2 = k(k2-l)- y t
P 12

bye. further application of (110), with }s; for lie This gives

v =sys

This result nay 'be checked by applying ~he general formula (109)

to this popub.tion. It will be found that f (kd)w = I, for all g,.

From the formulne "fe deduce thp.t

v < V < Vstrat sys ran

Thus for removing the effect of an unknown linenr trend, the systematic

S~Dylc is much more effective than the r?ndom s~mple, but less effective
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th~n the stratified r~ndom sBMple.

Periodic trend: If the population consists of a periodic trend,

e.g~, a simple sine ~urve, the effectiveness of the system~tic sample

dc~ends on the value of k. This may be seen pictorially.

,

In this re.presente,tion~ the height of the curve is the observation

Yi• The sample points A represent the c~,se lee.st favore,ble to the

systematic sample. In this c~8e k is equal to the period of the

sine curve. Every observation within the systematic sample is exactly

the same, SO that the sample is no more accurate than an single obser-

vation taken at random from th~ population. This holds whenever k

is any integral multiple of the period.

The mast favorable case (sample B) occurs when k is an odd

nultiple of the half-period. Every systematic sample has a moan

exactly equal to the true population mean, since successive devia-

tions above and below the middle line c?~cel. The sempling variance

of the mean is therefore zero. Between thes~ two cases the semple

has various degrees of effectiveness, depending on the relation

between k and the periOd.
Na,tura,lpopulations: A few comparisons have also been made from

natural populations. For inst~,nce, Johnson (16) studied 13 :populations

in which the observations were the numbers of seedlings in successive
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feet in a forest nursery bed. In seven beds containing seedbed

stock of high variability, the variance of the mean of the systematic

s~~Jle was only about half th~t for the stratified random S21~jle:

both were much more accur~te than the simple random s~mplo. The

results for those beds appear in Table 10. In the remaining six

beds, which had more homogeneous transplant stock, the systematic

a~d the stratified sample were about equal in accurp-cy. both being

e~ain s~er1or to the simple random sample. For estimating the areas

under different types of cover (e.g., grass, woodland) from a map,

Osborne (23)' found the systematic sample twice to four timos as

accurate as the stratified sample. In these investigations the

stratified sample had a stratum size 2k, with 2 samples per stratum

sO as to permit estimation of the sampling error, The results would

?robably remain substantially the sm~e if the strptum size were

reduced to k. It nay be anticipated that for populations where Y1

shows tcont1nuoust yariation~-in the sense that observations near

one another are likely to give similar results-the. systematic sample

will often be more effective than strRtified random sampling. A
thooretic~l investi~ation on this point has been nade by Cochren

(2~).A useful elementary discussion of systematic s~plcs, with

a.~:>plicEltionto part of Johnson's datA., 118.s been J?;ivenby L. H.

!-:e.do\'1 (25).
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TABLE 10.

VARIANCES OF SAMPLE MEAN NUMBERS OF SEEDLINGS
(F. A. Johnson's Data)

r
:Bod V V V Estin..."tcof V r

ran etrat eye by Method syer
(1) (2) ,

r
1 Silver ~inp1e 1 2.62 2.01 0.91 2.8 2.5 ,, 2 3.26 2.19 0.74 3.6 2.9 ,
rA •..Jeri can El.J!1 1 25~7 9.2 4.8 28.4 12.6 ,
I 2 20,-8 15.8 15.5 22.6 18.6 I

'\'IhiteSpruce 1 13.4 11.9 5.5 17.2 11.2 1

I 2 9.0 4.8 2.0 11.6 6.4 ,
q'lhitc Fine 1 19.4 16.8 8.2 21.0 21.9 I

r r
r ,

6.4 Estimation of the v~.ria.ncefrom a eine1e s~nle: Given tho.

results of a single random sample, we can calculate an unbiased

estimate of the v~riance of the sample mean, the estimate being un-

biased whatever the form of lli -oo'Dulation. This useful property

does not hold for the systematic s~mple. This may be seen by moans

of tho 'sine curve' example. Let

whore k = 4 ~nd i. I, 2, ••• 4n. The successive opsorvatiens

arc
m + a, m, m - a, m, n + a, m, m - a, m ••• . .

If i = 1 is chosen. ~ members of the syste~at1c sample have tho

value (m + a). For the other three possible choices of 1, all mem-

bers have the values m, (m - a). or m respectively. Thus fron a

sinelc snmplo we have no Means of finding out or estimating tho

v~lue of A, since we observe only (m + a), m, or em - a). :But the

true s~mp1ing variance of the me~m of the systematic sMlple is
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Consequently, no rell~ble estimate of the stand~rd error crn be

attached to R systematic s8~ple, in the sense that this c~n be done

for a random semple. What is usually done in pr~ctice is to meke

sorno nssumption about the M.turc of the population, and to use a

vC'.ri['nccformula that will be reasonfl.blyunbiased if the assUEr)tion

ha;):flcns to be correct. For instance, if it is believed that the

obscrvp.tions are ordered cssentie.lly at random, tho variance formula

for a r~ndom s~mple might be used. If it is believed that there will

be differences among strata, but no serial correlation within strata,

an estimate such as

n-l 2
~ (y - y ) /2(n-l)i=l i i+k

might be used. This esti~.te is likely to be positively biased, since

it containsstr~tadiffcrcnces: it might not be far in error if dif-

fercnccs between nei£hborin£ str~ta were small. To deal with the

case where serial correlation was present, Osborne (23) used a nore

conplex formula which seemed to work well for the type of natural

population with which he w~.s dealing. A type of formula appropriate

to a population with an exponential correlogram ~s boen given by

Cochran (24), and an interesting general study of the problon b~
,-L'Latern (26). All such !:lothodsare, of course, hazardous, fI.ndshould

be supplemented by detailed study, whenever possiblo, of the propertics

of the t~rpe of popula.tion that is being sNnplcd.

'The applicD.tion of two formul?,e of this tne to Johnson IS de.ta

is shown in Te,ble 10 (righ hf\.ndcolumns). Method (1) is the nethod

Given in formula (Ill) t based on successive differences. It con-

sio_er[1,bl~roycrestiffif!.testho v?ri~.nce for the str~tificd s~.Mple and

is sC1:'.rcely'H'ithin sight of the true .•••ari~.ncc for the sJ~stcmatic

s$11::l1e.Method 2 uses the estimate
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Tl:is would be approprip,tc if the population cont~,lncd a linear

trend plus rAndom devi~.tions. Eowevcr, it a.lso fails in this

cnse, where the populntion contpincd a qUAsi-continuous variation

of a more complex type.

An alternative approach thnt is being investigated by Yates

is to take supplementary observations along with the systeMc~tic

s~:Wl0. The extra observations will be used to obtain more infor-

mation about the nature of. the population and SO to provide a morc

reliable estimate of va.riance. Results have not yet boen published,

taough the method shows promise •.

REFEEENCES

(22) liadow, W. G. tlnd L. H~ "On the Theory of Systemt'l.tic Sampling"
Ann. )i!~,th. Sta.t. 15, pp. 1-24, 1944.

(16) Johnson, F. A. "A Statistical Study of Sampling Methods for
Tree Nursery Inventories" JourM.l of Forestry, 41 pp. 674-
679, 1943.

(23) Osborne, J. G; "Sampling Errors of Systematic ana Random
Surveys of Cover-typo Areas" Jour. Amer. Stat. Asso., 37,
pp. 256-264, 1942.

(24) Cochran, W. G. lIRelntivo Accuracy of System~.tic and StrE'.tified
R~~dom Samples for a Cert~ln Class of Popuh~tions" Ann. Math.
~, 17, pp. 164-177, 1946.

(25) l<lp,dow,L. H. "Systomp.tic Sl'npling And Its Relfl.tion to Other
SEl.mpling Designs" Jour. Amer. Stp,t. Asso., 41, pp. 204-217,
1946.

(26) Mat~rn, B! "l-iethods of Estime,ting the Accur~.cy of Line ['~d
Sflmple Plot SurvoYSIl Medd. fro Stat ens Sko,gsforsknin~s
Institut, B~~d 36, p. I, 1947.



- 77 -
TYPE OF SAMPLING UNIT

7.1 Someti~es the population c~n be divided into units in var-

ious \ofaYS. For example, we ~ight regt'lrd1'\. city as composed either of

a nunber of city blo~ks, or of a number of households, or of a number

of ~lcrsons. Similarly, in soil sE!r.lpling,the tool with which the

sa~ple of soil is extracted can be constructed of various sizes and

sp~pes, each of which determines a different subdivision of a field

into units. A change in the type of sampling unit will usually affect

both the cost of taking the sample and the accuraCY. The determination

of the optimum type of unit is therefore of importance from the point

of view of reducing costs.
The optimum unit is that which gives the desired variance for the

sanvle estimate at minimum cast. In order to compare two different

units, we must find the size of sample needed with each unit, and the

cost of taking this size of B~~ple for each unit. It is quite often

found that when a given percentage of the population is sampled, a

large unit provides a less accurate estimate than a small unit. How-

ever, the sample tends to cost less with the ~rge unit. The situation

is not alw~ys 80: Hansen and Hurwitz (27) have pointed out that for

the estimation of the sex rRtio, a household is roughly twice as

accurate as a person (for a given percent sampled), because of the

co~~on presence of husband and wife in the same household.

7.2 A simple examnle: Johnson's data (28) for white pine seed-

lings provide a simple example. There were six rows in the bed (or

population) and the rows were 434 feet long. The object in sam~ling

is to estimate the total number of seedlings in the bed. Clearly

there are me.ny wfl:Ys in which the bed can be divided into sanpling

units. The releVAnt data for four types of units are shown below.
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T~LE 11.

DATA FOR FOUR TYPES ('F SAlvIPLIlTo.UNITS

Type of Unit
One foot Two-feet One foot Two-

row row bed feet
bed

N. = nu.,-,berof units in pop. 2, 604 1,302 434 217'
1

2 variance per unit0: = pop. 2..537 6.746 23.094 68.558
J.

Uumber of feet of row tha.t can 44 62 78 108
be counted in 15 nins •..

The 'units were (i) one foot of e single row (il) two feet of a

single row. In both these cases it was assumed that the sample would

be stratified by rows (one-sixth of the sample being taken from each

rO'lr) so thB.t the va.riences represent vfl.riMces within rows. (iii) One

foot of the complete width of the bed and (ii) two feet of the cO~21ete

width of the bed. For these cases it was assumed that simple random

samples would be taken.

Since the principal cost is that of locating and counting the

units, costs were estimated by a time study (last row of Table 11).

A larger bulk of sanple can be counted in 15 minutes with the larger.

units. since less tine is spent in moving from one unit to another.

The item to be estimated is the population total number of secd-

li~1gS. In studies of this type. a population total is more convenient

to discuss than a population~. since the' mean per s.u. for a two-

feet oed unit is quite a different quantity from the Mean per s.u. for

a one foot rOw unit, whereas the population total has the s~me neaning

for all units. If the f.p.c. is ignored, the variance of the estinated

population total is
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where i = 1, 2, 3, 4 st~ndB for the type of unit, ni for the nunber

of units in the sAmple and Ni for thEl.tin the population. \ie "IS.nt

this variance to be the s~me for all units. Thus if the smallest

unit is crosen RS a standard, the values of the other ni the.t give

the se~e accuracy as the smallest unit satisfy the equation

= •

For e:x:a.'1:ple,the vEl.lueof nZ comp~rable to nl in this respect is

6.746,~
2.537

These data are shown in T~ble 12, first line.

TABLE 12.

COKPA...1W3LE.SAJ.'>J'LE SIZES AND COSTS

Relative net efficiency
1'- -----------------

Com)arable values of n1
Comparable sample sizes
(in one-foot row units)

Co~al·<:,.blecosts

Type of Unit

One foot Two feet One foot Two feet I
row row bed bed I

n •665 ~ .253 ~ .188 ~1
n1 1.330 n1 1.518 nl 2.256 nJ!

t

c1 .944 °1 .856 cl .919 ~l

100 106 117 109

The next step is to find the comparable sample sizes in terns of

single ~ of row, since the cost dRta are expressed in these terns.

For Ilz we !'lultiplythe previous line by 2, bec~.use the unit contains

tuo feet of row. These dt".tavppefl.rin the second line of Table 12.

It uill be observed tha.t a.s the size of the unit inorel".scs,the size of

SW~Tlc requirod to obtain equal aocuracy also increases:in f~ct \'1it~the
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two-feet bed unit the sample must be 2 1/2 times as large as with

tho one-foot row unit.

The cost of taking nl of the smallest units may be expressed as

c1 = n1/44,

since this is the time required in 15-minute intervals. Similarly

thc cost with the second unit is

as shown in the Table. All the larger units cost somewhat less than

the s~allest unit. If we define net efficiency as inversely propor-

tiona! to cost, the relative net efficiencies are as given in the

last line of the Table. From these data the one-foot bed width

appears to be the best~e of unit of those compared~

Note 1. For exenples of this kind the comparable costs may be

obtained directly without going through the intermediate steps. If

Zi is the relative size of the i th unit to the smallest unit, the

reader may verify that the costs for equal accuracy are proportional

to

where c. is the cost of taking a given bulk of sample with the i th
1

Thus to compare costs with the first and third units, we

compare
2.537
1 x 44

= .0577 and ~4Q2! ~ .0493,
6 x 78

since the one-foot bed is six times as large as the one-foot row.

~oto 2. Th8 previous example might be criticised on the

grounds that whp.tever unit was chosen, the s~ple taken in practice

wo\.ud either be a strfJ.tifledr~ndom sample or an I every k tht
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systenatic s?mple, whereas the compt'.risons assumed 1lQ stra.tificat ion

along the length of the bed. When comp?ring different typos of unit,

it is advisable to ryake the comparisons for the kind of s~mpling that

is to be used: or if this has not been decided, for the kinds that

arc tmder consideration. A change in the method of sampling may

c;1ange the relat ive costs of the different types of unit. A highly

effoctive stratification, for instance, tends to make comparisons

more favorable to the larger units, though the influence of strati-

fication is not always in this direction. Some data on stratifica-

tion as affecting the relative efficiency of large and small units

arc given for farm sampling by Jessen (17). In the same way, com-

parisons of type of unit will depend on the method of estimation

that is used (see Section 9).
7.3 Comoarisons from Samnle Data; In the previous example~the

variances of the various sampling units were obtained from a com)lote

consus. When only sample data are taken, a slight ch8nge in the pro-

cedure is sometimes necessary. To illustrate, we consider a farm

s~2le taken in North Carolina in 1942 in order to estimate farm

eoploynent. For details see reference (29). In effect, the method

of drawing the sample was to locate points at random on the map, and

to choose as sampling unit the three farms that were nearest to each

point. Thus the sampling unit comprises n group of three neighboring

farms, This method of selecting farms gives a large farm a greater

chance of being included in the sample than a small f~,rm, so that tho

avera.go farm size in the sample tends to be biased upwards. Any

effects of bias will be ignored in the present discussion,
The st1.mplcwas str8.tified, thE) strt=l.tumbeing a group of to••.m-

shi"ps that were simile.r in density of farm populat ion Elnd in ratio

of cro")lond to fArmland, Some d?ta. for the saMple taken in ~1ay arc
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shown below.

TA:9LE 13.

SIZES OF POPULATIOn AND SA.MPLE

Population

No. of str~ta 587
No. of sampling units 72,849
No. of f~rms 217,976

Sample

572
1,397
4,166

It will be noted that a few strata were not sampled: further, tho

number of ferms per unit was very slightly under 3 (this discrepancy

will be ignored). The sample wa.s fl.bout1.9 percent of the population •.

From this sample we can compare the cluster of three farms that

was actually used with the single farm. We shall not go into the

cOst ns~ects of the comparison, the purpose beinp to shov how to

estimate comparable vB.riMces. The first step is to compute an

analysis of variance of the sample data, shown below for the nunber

of :paid \·Torkers.

TABLE 14.

ANALYSIS OF VARIANCE (NUMBER OF PAID WORKERS)

d.f. mean square,
Between units wi thin strp.ta
Bot\V'ecnfa.rms "Iithin units
Total: Between f~rms within strata,

825
2.768
3,593

6.218
2.918
3.676

This analysis is computed on a singlc-f~rm basis.

We wish to compare the accuracy of the population total nUMber

of l.)C'.id\.,orkersas estimated by (i) a sample of n individual farms,

(ii) a senple of n/3 clusters of 3 farms each. Each sanp1e will be

stratified into the strata that were used.

For (i) the va.riance of the estinated state total (ignoring
2 2f.p.c.) is N OlIn, where N is tho number of farms in the state and
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201 is the vftriftncebetween ferms wi thin str~.ta. 2To estimate 01 '
it ~ight at first be thought that we could use the mean square

be~woen farms wlthin strata as found in the sample: that Is, the

menn square 3.676 as given in the last line of Table 14. However,

the sample taken was not a random sample of farms within strata, but

a random sanple of groups of three-farms. This fact causes the

estimate to be biased.

An unbiased estimate of a~ may be obtained by making an analysis

of variance, similar to Table 14, for the complete population.

T.Al3LE 15 •

.A1TALYSIS OF VARIANCE FOR THE COMPLETE POPUlATION

, Between units wi thin strB.ta
, 3etween farms within units

Total: Between farms within strata

d.f.
72,262

145 .127
217,389

Estimated mean
6.218
2.918
4.015

Bouare'
- I

I

I

I

Tho degrees of freedom are obtained from the data in Table 13.

The argument is that if we had analYzed the complete population, the

mean square in the last line of the table would be the exact value for

the variance between fams within strata. We do not know the popu1a-

tion values for the mean squares between units within'strata or bo-

tween farms within units. But the figure 6.218 obtained from the

s~x21e is an unbiased estimate of the former, and the figure 2.918

is Dn unbiased estimate of the latter. Hence an unbiased estimate of
2the me~ square 01 between farms within strata is

72.?62 x 6.218 + 145,127 x 2.918
217,369

If o~ is the variance within strata for the 1three-fRrn' unitt

= 4.015.

tho variance of the estimated sta.te total will be
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( ~} 02 2 O22 N= ,
n/3 n 3

because the population contrdns only N/3 of these clusters, and the

s8J!l-plesize is n/3. The figure 6.218 in the analysis of variance

is ~n unbiased esti~ate of 02/3, since the ~ean square between the
2

cluster totals h~s already been divided by 3 to transfer it to a

sin~le-f('.r~bp.sis. Consequently, for the SElMe total size of saT.19le,

the comparable variances for the two units are

4.015 (single farm) and 6.218 (group of 3 farms).

Thus the senple size must be about 50 percent larger with the

cluster unit than with single farms. Consideration of costs would

~clce the result more favorable to the l~rger unit.

7.4 A Variance 7unction: Attempts have been rnadeby various

aut~~rs, notably Jessen (12) and Mahalanobis (5), to develop a gcn-

eral law which shows how the s~npling error changes with the sile of

unit. Suppose that the smallest unit is called an element, end that

the large unit contains M neighboring elements. It has been found

in several B~ricultural surveys that the v~riance ~ between elements

within the large unit is related to M by Means of the fOrMUla

W = AlIS t g> 0 , (112)

where ~ and £ are constants that do not depend on M. In this rep-

resenta,tion ! increases stcadily ~.s the size of the large unit

increases, the curve being concave upwards. A curve of this type

might be expected when there are forces that exert a similar in-

fluence on elements that are close together. Thus climate, soil

t~2e, topography, access to markets, ~nd SO on tend to make neighbor-

inf; f~.rms hp.ve similar features.
Note that the formula applies to the variance within the large

unit and not to the s~mplinf, error for the large unit, the latter
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being derived froM the vf'ri~.nccMon.e: large units. We cnn derive

a corresponding rclfl,tionfor the s~T1'Iplingerror. Suppose that

the population contains N eleMents, i.e., N/M large units. The

f'oJ:lOl'TingaM,lysis of varinnce holds for the va.riation among ele-

ncnts in the population.

:Between l~rge units

:Sct\'1ecnclements wi thin lnrge
units

d.f.
N - 1M
N (M - 1)M

Mean sq~.re

:s

W

:Sct,'recncleuents in the population (N - 1)

Fron this it follows, that

T

(N-M):s
M = (N-l) T N(M-l)W

!wI

Obviously the quantity T docs not depend on M. Hence:S is expressed

as a ftUlction of M and of the three constants A, g, pnd T by the

relation

~ho constants A. K, pnd M are estiMated frOM the data. For

this ~urpose we require (1) an estinate of the v~r1ance among ele-

Ments in the cor~lete population, so as to obtain! (ii) an estl-

nate of the variAnce between elements within large units for at

least two v[llues of M, SO as to obtain ~ and KL If the relation

hOlds, 'ie clIn then predict the vnlue of 1!, A.nd hence the sl'l;npling

Vari~ice with the lA.rge unit, for any vplue of M.
Hendricks (30) has point~d out th2.t the COMplete population

might be regprded fl.Sfl. single large sprnpling un! t contl'l.iningN

elenonts. If foroula (113) holds I we may therefore put T = .A#.
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Substitution in (113) gives

( 114)

The formula now depends on only two constAnts, A and g. It can

thereforo be estimated from the variance among elements in the

population, plus the vpriance within the ~~rge unit for ~ valuo

of M. It may happen, however, that while (112) holds for small

vP~ucs of M. it fails to hold for the very large value MaN. In

this event the more generp~ formula (113) for ~ should be used.

For alJpl1CFlt1ons of (114) to Elgricultural data, see Hendricks (30)

and HcVny (33).

7.5 A Cost Func~icn: In connection with surveys where the

elements are farms, ~~d the larger units, or clusters, are groups

of neighboring farms, Jessen (12) hE.s developed a function that

e~resscs the cost of taking the s~~ple in terms of M. The dis-

cussion below presents a sirnplifi~d form of this cOst function.

We suppose that the spnple contains n large units, each with

H clenents. Two conponents of cost are distinguished. The compon-

ent clMn consists of costs thEl.tvpry directly with the total number

of clements (farms): thus c1 contains the cost of an interview and

the cOst of travel fror.!fl"rm to fprm within the l~.rge unit.

The second component, c2~' Me~sures the cost of travel

between the areas. By tests on a map it w?s found t~~t this cost,

for a fixed population, v~ries with the soUl'.reroot of the number

of sP.Dpling units. T ota.1 cost is therefore of the form

C (~i,n) = c1Mn + c2 Jll: ( 115)
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The best choice of !1 pnd .n is thEtt which minimizes the cost

for a spccified value of tho vflriance of 'the est1mfttc. If we are

esti~~ting the menn, per farm for some item. the vEtriftnce, ignoring
. ,

f .p.c~ t ,"Tillbe B/Mn. since there are Mn fprms in the sf11l1pleand 12.

is tho vari~nce between the units on a single-farm bftsis. Simple

r~ndon s?mpling is assumed. Taking the more general form (113) for

~t ~"e have

V(M~n) == ~n = {(N-I) T - N(M-I)W-1 /n(N-M) • (116)

Since ~ is assumed very large this reduces to

V(M~n) = { T - (M_l),AMg-l} In. (117)

The algebrnic solution is a 'little conplex. though its appllca-

tion in a particular "problen presents no great difficulty. We shall

consider one aspect of the solution that leads to some interesting

conc1usions~ We ~ve to minimize

C + '-V

for a specified value of V. Since aV/on z -V/n, the equations on

diffcrenthtion with respect to n find M p.re

_ 1 I
c n T="-Vn.2

Dividing (11~ by (118) so RS to elimiM.te ~, we find toot

c2
2c1MJil

No", if cqur'tion (115) for the cost is solved p,s P. qup.c1.rpticin ..rn.

.Ji..
V =

1 +

1 (120)

it ,.,il1be fOWld, nfter some r.ll'lnipu1ntion,thp.t
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2 cl l'l .rn {l 4: C clM r -L
= + 2 1c2 2c2

Su'hstituting in (112) we find

.A. ()V =[ 1 + 4C :lMJ -+V oM 1 (121)
c2

The irnportRnt point A~out this equation is thP.t it does not

invol va.n, (IS mA.Y be verified from the form of V, eQ.UA.tion(117).

It is ~n equntion from which we cpn solve directly for M. Further,

the left h~nd side does not involve ~ny of the cost fA.ctors. The

right h~nd side involves M only in the combinntion 4 C c1

"

Hence if the vA.rie,ncefunct ion is unchflnged but the cOst factors

vary, N will respond to these v~riations in such It way that the

quantity 4: C cl M/ c~ remAins constpnt.

Now 01 increases if the length of interview increases, while

c2 dccrcpscs if trnvel becom •.s chaR.per, or if the fp.rms in It given

are~ become more dense. These facts lead to the conclusion that

the optimum size of saopling unit becooes smaller if (1) the length

of interview increfl,ses (ii) trpve1 becomes chea.per (iii) the eloments

(ft',rns)become nore dense or (iv) the total e.mount of money used

(o) increases. Th~ conclusions are, of course, a consequence of

tho t7~o of cost function that has been used A.nd would require rc-

eX~1in~tion for a different type of cost function.

7.6 Onsas where the Lpr~e Units Vary in Si~e: This r~ppens

in nLIDcrous surveys. A household, for eL~le, contains differing

nunbcrs of individuals while an area of land, as usod in fA.rn sur-

vcys, will contnin differing numbers of f~rrns. If several specific

sizes of unit are being cOr.lpA.red,pnd if the varia.nce hl'l.sbeen
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cstinated directly for c1'I.chsize, the methods of section 7.2 may be

ap]lied without chRnge. The construction of a variance function re-

quires a nore elaborate ana.lysis of va.ria.nceto take account of var-

iations in the MIS. See (12) and (29).
The best method of cstimP.ting a population total also requires

considcr~tion. Suppose that the i th s1'lmplingunit has Mi clements

pnd that the item total for the unit is Yi• The method considered

thus far for estimating the population total is to calculate the

mean I)cr s.u., t yi/n, Ellldmultiply by the number of s.u.' s in the

popub.tion. If Yi is roughly proportiona.l to Mi' as will often

ha:p-)on, this estiJM.te may be rpther poor, since its v?ri~tncewill

depend on the varip.tion in the Mi' An alternative is to cAlcula.te

the me~n per element t Yi/~ Mi' and multiply by the number of

clements in the populgtion. This 1s frequently. more accure.te than

the estima.te bpsed on the menn per s.u •• The SPJ!1pl1ngvar1?.nce

of this type of estimate is not covered by the formulae given

previously in those notes, since both b Yi and t Mi will vary from

s£'nple to spmple, so that the estimptc involves the rr>tio of two

randon vprip.tos. SN!lpling vrrip.nces for rf1.tioestinates El.regiven

in Section 9.
7.7 Pos~ible :Sip.swith Smp.ll Units: It sometim8s is found

the.t s~nll units give biased ~stimates, the bias arising from un-

cert~.int~T p..boutthe boundF',ries of the unit. For expnple, Homeyer

?nd ::alp,ck(31) found thp.t in spmpling for the yield of oats, units

2' x 2' g;we yields Ftbout 8 percent higher tht'.nunits 3 r x 3'.

They or)ress the opinion th~t the results for the lprger unit are

prob.<'.'bl~TI"'l~obinsed upw~,rds, becpuse srmplers tend to plr.ce boun-

dnry pl~nts inside the unit when there is doubt. SukhFttme (32)

gives sinilFtr conpprisons in spmpling for whent and pRddy.
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S1JBSAl-tPLING

8.1 Suppose that the population is divided into! large sampling

units, and that each of these conta.ins M. sma.ller units, which we ,'fill

now call sub-units. If sub-units within the same unit give closely

similar results, it may seem a waste of time to enumerate all H sub-

units. Consequently, it is a common practice to enumerate only ~ of

the li suo-units in each unit. In the presentation of the initial

theory, these m will be assumed chasen at random from the M. This tech-

nique is called sub8am~lin~, since the sampling unit is not completely

enumerated, but is itself sampled. For instance, in estimating the

production of wheat in an area ~y sampling the standing crop when it

is ripe, the field might be the sampling unit. It would not be feasible

for a travelling erew to cut and thresh the whole of every wheat field

th8.t CQme into the sample. Instead. small areas of wheat (sub-units)

are cut from each field. Studies have indicated that it is not econom-

ieal to cut more than a small part of each field, so that in this Case

m/h is likely to be quite small. Similarly, in sampling the inhabi-

tants of a town, a block may be the sampling unit, and a fe'.,persons

or households selected from each block thEl.tcomes into the sample.

17ote. From another point of view, subsampling is the same thing

as incom9lete 8tratification~ For we might regard the sub-unit as

the s~~)ling unit, and the unit as the str~.tum. The sampling tech-

nique is then such that only certa.in of the strata are sronpled.

8~2 Zlementar.v theory: We assume that the observation Yij from

the j th sub-unit of the i th unit is of the form

( 121)

where f'r~presents the population mean. bi varies from unit to unit

\'rith !ileaLzero ~nd vClri~nce a~ ' and '\j varies from sub-unit to

sub.....uni t \·,1th mean zero and va.rlance 0;. All values of bi ' wij
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are assumed mutually independent, and the number N of units in the

pOyulation is as~umed infinite. The units are chosen at random from

the population, and the sub-units at random from the units.

From (121) it follows that the sample mean per sub-unit when m
sub-units are taken from each of A units is

(122)
Hence,

+ (123)

"

Note that an increase In m diminishes only the contribution from the

variance within units: an increase in n diminishes both components of

thev2.riance. 'or an estimate of'the population total. we use NMYnm:

the variance is tnen multiplied by (NM)?

8.3 Estimation of the vEl,ri~ce; When a sample of this type has

been taken. we may compute the following analysis of variance, .QA .a

sub-unit basis.

TAJ3LE 16 ~

ANALYSIS OF VARIANCE WITH SUBSAMPLING

d.f.
I ':Bet\'Teensampling units (n-l)
I

I

I Within units between n(m-l)
I sub-units
I

Mean square Estimate of

B = m t(Yi.rYnm)2/(n-l) cr~ + m cr~

Itwhere Y1, is the mean of the m observations from the i th unit.

may be shown by algebra. that the expected. va.lues of :B and Ware as

shown in the right hand column of the Table,
Consequently from (123). an unbiased estimate of the variance of

the sem)le mean Ynm is simply B/nm. The value of !is not required.
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8.4 Prediction of the v~rlance for other subsamu1ine rates:

FroD tile analysis of variance in Table 16, we can also predict the

vari~nce of the sample mean for sampling and subsamp11ng rates differ-

ent ~rom those actuaIly used. This information may be useful in the

planninG of future samples on the same type of population.

Su.-.l?~osethat in the in1 tial sample there were .m sub-units so.npledP'lr

unit and n units. We wish to estimate the variance of the sample mean

under the supposition that these numbers were changed to al and n'
respectively. :By (123). this variance is

02 2
0

V(Ynlml) b + w=
n' n1m'

From Table 16, unbiased estimates of 2 and a2
°b arew

2 (:B-W)1m 2 Ws = s = •b w

( 124)

Hence the estimated vflrla.nceof the sample mean is

2 2

[= ~ ;]sb Bw ..J..... \'1 (~ ( 125)+ = + -
n' n1ml n'

EpJIln1~: King and Jebe (34) report the following analysis of

variance in spmpling wheat fields in North Dakota, 1938. Two small

s&~ples were taken from each field, ~nd the fields were stratified by

di stricts.
TABLE 17.

A1i4..LYSIS OF VARIANCE OF i'iHEAT YIELDS (BUSHEL FilR ACRE) *

I Between fields within districts
I Witilin fields between subsampling

units.

d.f.
217
222

l<Ieansquares
180
38

I

I

I

I

* Since tile analysis presented by King and Jebe refers to a field

mean, the mean squares have been multiplied by 2 to place it on a
sub-unit basis.
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~he fields were not chosen at random, but by following routes

designed SO as to give good coverage of the area. Consequently, the

mero1 square between fields may be a slight overestimate of the figure

that would be obtained from a random sample of fields. For purposes

of illustration, it will be assumed that the technique may be applied

here. Further, effects of variation in field size are ignored.

1!e will consider how the variance of the sample mean is affected

by (i) doubling the number of fields, with 2 Bubsamples per field;

(11) keeping the number of fields unchanged, but taking 4 subsamples

per field; (11i) keeping the number of fields unchanged, but completely
harvesting the fields.

If there are A fieldsln the original sample, the variance of

the s2mple mean is lBO/an, or 90/n. By substitution in (125) the

reader may verify that the corresponding variances for Cases (1) and
(ii) are

45
n

80.5
n •

To solve case (iii), we have to assume that complete harvesting would

be equivalent to taking all possible sub-units out of every fleld in

the sample. Since the size of the sub-unit was very small compared

to the size of a fiel.d, this implies that m' = GO. The formula

gives

v .. i ==1.1.
71
n •

The results illustrate the point that when there is an substantial

variance between units. the variance of the sample mean cannot be

decreased rapidly by increasing the subsampling rate: it is necessary

to s~uple more units.

8.5. APDlication to field experiments: This type of theory may

be ayplied to field experiments in cases where plot yields are
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